Tag Archives: Bees

Pollinator biodiversity and why it’s important: a new review just published – download it for free

P1110763

In a new review paper that’s just been published in the Annual Review of Ecology, Evolution and Systematics I have looked at the question of just how diverse the pollinators are, and why pollinator biodiversity is ecologically important and therefore worthy of conservation.  I’ve taken a deep time and wide space approach to this, starting with what the fossil record tells us about when animal pollination evolved and the types of organisms that acted as pollinators in the past (the answer may surprise you if you’re unfamiliar with the recent paleontological literature on this topic).  Some of the most prominent biogeographical patterns have been highlighted, and I have tried to estimate the global diversity of currently known pollinators.  A conclusion is that as many as 1 in 10 described animal species may act as pollen vectors.

As well as this descriptive part of the review I’ve summarised some recent literature on why pollinator diversity matters, and how losing that diversity can affect fruit and seed set in natural and agricultural contexts.  Extinction of pollinator species locally, regionally, and globally should concern us all.

Although I was initially a little worried that the review was too broad and unfocused, having re-read it I’m pleased that I decided to approach the topic in this way.  The research literature, public policy, and conservation efforts are currently moving at such a fast pace that I think it’s a good time to pause and look at the bigger picture of what “Saving the Pollinators” actually means and why it’s so important.  I hope you agree and I’d be happy to receive feedback.

You can download a PDF of the review entitled Pollinator Diversity: Distribution, Ecological Function, and Conservation by following that link.

Pollination ecologists should also note that in this same volume of Annual Review of Ecology, Evolution and Systematics there’s a review by Spencer Barrett and Lawrence Harder called The Ecology of Mating and Its Evolutionary Consequences in Seed Plants.  If you contact those authors I’m sure they’d let you have a copy.

Advertisements

9 Comments

Filed under Apocynaceae, Bees, Biodiversity, Biogeography, Birds, Butterflies, Climate change, Ecosystem services, Evolution, Honey bees, Hoverflies, IPBES, Macroecology, Mammals, Moths, Mutualism, Neonicotinoids, Pollination, Urban biodiversity, Wasps

The Buzz Club: citizen scientists protecting pollinators

Buzz Club 1.png

This is a guest post by Charlie Dance who is Development Officer at The Buzz Club.


It’s hard to over-stress the importance of pollinators. Not only do they play an indispensable role in global food security, they’re also essential in maintaining the diversity of plant species in natural habitats, thus supporting nature as a whole. The UK is home to thousands of different pollinators including bees, wasps and hoverflies. However, while many of these species seem to be declining or disappearing, we know surprisingly little about the majority of them. Why are some disappearing, and how quickly is it happening? What can we do to help? How can we turn our gardens into pollinator havens? It was to help answer questions like these that the Buzz Club was founded in 2015.

Run by volunteers at the University of Sussex, The Buzz Club is a citizen-science charity using the power of the public to provide important data on pollinators. We run a variety of nationwide surveys and experiments suitable for all ages and ideal for wildlife and gardening enthusiasts. Furthermore, we provide information about how to make our urban landscapes more pollinator friendly.

For more information and for a list of current projects, please visit our website: http://thebuzzclub.uk/

As a membership-based organisation, we rely on the small donation of £2 per month from members, all of which goes directly towards running the charity. Not only do new members receive a complementary welcome pack containing a specially designed seed mix, bee identification chart, pollinator-friendly gardening guide, magnifying lens and stickers (see photo below), they also get to learn more about pollinators whilst helping to generate useful data that can be used in our projects.

We believe that with your help we can find out how best to conserve bees and other pollinators. Our ultimate goal is to ensure that we look after insects, giving them and us a future.

Join the Buzz Club here: https://alumni.sussex.ac.uk/buzzclub

Facebook: http://www.facebook.com/TheBuzzClubUK

Twitter: http://www.twitter.com/The_Buzz_Club


From Jeff:  if citizen science is your thing, don’t forget that the Ivy Pollinators project will run again this year: https://jeffollerton.wordpress.com/2016/10/11/ivy-pollinators-citizen-science-project/

 

Buzz Club 2.png

Leave a comment

Filed under Bees, Biodiversity, Butterflies, Ecosystem services, Gardens, Hoverflies, Moths, Pollination, Urban biodiversity, Wasps

The 31st Annual Meeting of the Scandinavian Association for Pollination Ecology (SCAPE 2017) – registration closes 15th September

SCAPE logo

SCAPE is my favourite annual conference by a long margin: small, friendly, welcoming (especially for Master’s and PhD students, and postdocs), and packed full of great science.  It’s the longest-running annual conference of its kind in the world and this year the 31st meeting takes place in Norway; registration closes on 15th September – here’s the link for more information.

So if you are a scientist with an interest in pollination ecology, in all of its varied expressions, consider coming along.  I’ve written a short history of SCAPE here, and these are some links to previous meetings to give you a sense of what to expect:

https://jeffollerton.wordpress.com/2016/10/15/i-want-to-see-the-bright-lights-tonight-the-30th-annual-scape-conference-part-1/

https://jeffollerton.wordpress.com/2015/10/25/scape-day-3-science-on-a-sunday/

https://jeffollerton.wordpress.com/2014/10/27/dancing-with-wolves-more-from-scape-2014/

https://jeffollerton.wordpress.com/2012/11/07/the-great-escape/

Leave a comment

Filed under Biodiversity, Pollination

A new pollinator for our garden: the Ashy Mining Bee

Today I’ve been cracking on with the refurbishment of the old summer house at the back of the garden that previous owners have let fall into rotten disrepair, whilst Karin attends a conference in London.  The renovation has been a slow job, due to lack of time, but a lot of fun, and a good excuse to play with power tools.  In between sawing and drilling, however, I’ve been keeping an eye out for bees and other flower visitors and was delighted to spot a new species for the garden – the Ashy Mining Bee (Andrena cineraria).  It’s a beautiful and distinctive insect that I know from other sites in Northampton, but had not recorded here previously.  The record has been submitted to the BWARS recording scheme for this species.

Do look out for this bee, it’s difficult to confuse it with anything else (which is rare in Andrena….)  Here’s a few photographs of a female collecting pollen from a cultivated rose, that I took with my phone:

Ashy Mining Bee 2017-06-17 10.55.45Ashy Mining Bee 2017-06-17 10.55.53

Ashy Mining Bee 2017-06-17 10.56.10

 

5 Comments

Filed under Bees, Biodiversity, Gardens, Urban biodiversity

Generalist pollination can evolve from more specialised interactions: a new study just published

2013-11-24 15.44.01

There’s a long-standing idea in biology that ecological specialisation is an evolutionary “dead end” from which species can never emerge.  In other words, if a species becomes so adapted to a particular ecological strategy (could be feeding or habitat requirements or how it interacts with other species ) then no amount of natural selection will result in its descendants evolving different strategies, thereby diversifying into new species.  In particular it’s traditionally thought that evolving broader, “generalist” strategies from narrower, “specialised” ones is highly unlikely.

This has been much discussed in the literature on the ecology and evolution of pollination systems, where traditionally this “dead end” scenario has been accepted.  However a small number of case studies have shown that generalised pollination systems can evolve within much more specialised clades, beginning with Scott Armbruster and Bruce Baldwin’s study of Madagascan Dalechampia (Euphorbiaceae), published in Nature in 1998.

To this limited body of examples we can now add another case study: in the genus Miconia (Melastomataceae), generalist nectar/pollen rewarding strategies can evolve within a clade of plants that predominantly uses a more specialised, buzz-pollinated strategy involving just bees.

The work is part of the PhD research of Vinicius de Brito who is one of the researchers I was privileged to do some field work with in Brazil when I was there in 2013 – see my post: “It’s called rainforest for a reason, right?  Brazil Diary 6“.  Vini is the guy on the left of the photo accompanying this post.  Here’s the citation and a link:

de Brito, V.L.G., Rech, A.R., Ollerton, J., Sazima, M. (2017) Nectar production, reproductive success and the evolution of generalised pollination within a specialised pollen-rewarding plant family: a case study using Miconia theizans. Plant Systematics and Evolution doi:10.1007/s00606-017-1405-z 

Here’s the abstract:

Generalist plant–pollinator interactions are prevalent in nature. Here, we untangle the role of nectar production in the visitation and pollen release/deposition in Miconia theizans, a nectar-rewarding plant within the specialised pollen-rewarding plant family Melastomataceae. We described the visitation rate, nectar dynamics and pollen release from the poricidal anthers and deposition onto stigmas during flower anthesis. Afterwards, we used a linear mixed model selection approach to understand the relationship between pollen and nectar availability and insect visitation rate and the relationship between visitation rate and reproductive success. Miconia theizans was visited by 86 insect species, including buzzing and non-buzzing bees, wasps, flies, hoverflies, ants, beetles, hemipterans, cockroaches and butterflies. The nectar produced explained the visitation rate, and the pollen release from the anthers was best explained by the visitation rate of pollinivorous species. However, the visitation rates could not predict pollen deposition onto stigmas. Nectar production may explain the high insect diversity and led to an increase in reproductive success, even with unpredictable pollen deposition, indicating the adaptive value of a generalised pollination system.

As always, I’m happy to send a PDF to anyone who wants a copy, just drop me an email.

2 Comments

Filed under Bees, Biodiversity, Brazil, Butterflies, Evolution, Hoverflies, Mutualism, Pollination, Wasps

British cuckoo bees – an aide-mémoire

Screen Shot 2017-04-07 at 09.47.39

The British bee season is well underway with lots of reports on social media of queen bumblebees (and even workers in the south), and male and female solitary bees (especially early emerging mining bees – Andrena).  In my own garden I’ve already spotted a couple of bumblebee species, plus the Hairy-footed Flower Bee (Anthophora plumipes) and the Grey-patched Mining-bee (Andrena nitida), amongst others.  Running alongside the emergence of these nest-building bees is a whole suite of “cuckoo” or “cleptoparasitic” bees that, as the name suggests, lay their eggs in the nests of other bees, consuming the pollen that has been collected and, usually, the eggs and larvae of the host bee.

The specificity of the interactions between the cuckoos and their hosts varies a lot.  Some are very host specific, such as the bumblebee sub-genus Psythirus that only parasitises other Bombus species.  Others are much broader in their host use, such as the genus Nomada that parasitises five other British bee genera.

Personally I struggle to recall which cuckoo bees interact with which host bees, especially for those with a broader use of hosts, so I thought I would construct an aide-mémoire in the form of an interaction graph using the R package “bipartite”.  I took the information on which cuckoo bees parasitise which hosts from Steven Falk’s recent (and very good) book Field Guide to the Bees of Great Britain and Ireland.  If anyone spots any errors, please let me know!

The bipartite graph is structured such that the hosts (to the left, in black) are ranked from most to least parasitised (in terms of number of cuckoo genera that interact with them).  The cuckoo bees (in grey on the right) go in the reverse order, from most specialised to least specialised.  Note that this set of interactions only applies to Great Britain and Ireland; breadth of host-parasite interactions is wider on the Continent and elsewhere in the world.

Here’s a link to a better quality PDF of the plot that you’re free to use for your own use: Cleptoplot

Here’s the data matrix (Clepto) and here’s the R script if you want to play with it:

> library(bipartite)

#Turns the CSV data file into a data frame and assigns the first column to be the row names

> Clepto2<-data.frame(Clepto, row.names=1)

#Basic plot of the web

> plotweb(Clepto2)

#To turn the plot 90 degrees and centre the image, change spacing and text size, colours, etc.

> plotweb(Clepto2, method=”normal”, text.rot = 90, labsize =1.5, ybig = 0.7, low.y = 0.7, high.y = 0.98, plot.axes = FALSE, y.width.low = 0.05, y.width.high = 0.05, col.high = “lightgrey”, bor.col.interaction=”black”, bor.col.high=”black”, low.spacing=0.03, high.spacing=0.08)

#Note: save the figure as a PDF, much better quality than PNG

#With thanks to Kat Harrold who provided some of the script

9 Comments

Filed under Bees, Biodiversity, Gardens

Dispelling the myth that orchid species usually only have a single pollinator

Orchids at Kew 2014-02-24 15.30.32

The idea that members of the plant family Orchidaceae (the orchids) “typically have exclusive relationships with their pollinators“, such that each orchid has only one pollinator, is a persistent one.  Recently I’ve encountered it on horticultural websites (follow that last link), in grant proposals, and on Wikipedia.

The problem is that it’s not true: it’s a myth that is perpetuated by people (often botanists or horticulturalists) who may know a lot about orchids but don’t know as much as they think they know about pollination ecology.

Orchids certainly have some fascinating and often quite intricate floral mechanisms to ensure pollination, but these have not necessarily evolved to attract and exploit just one species of pollinator.  Even in the case of sexually deceptive orchids that fool their (male) pollinating insects into believing that they are mating with a female of the same species, it is sometimes the case that more than one insect species is involved.  For example, in the well studied genus Ophrysflowers are pollinated by a narrow taxonomic range of pollinators, from a single species to up to five closely related species“.  As the authors of that last paper state, this is not the same as the mythological “extreme case of one orchid/one pollinator”.

Likewise different species of orchid bees may pollinate the same orchid flowers as they visit to collect scent compounds; for example in the Brazilian species Dichaea pendula, species from at least two different bee genera act as pollinators (Nunes et al. 2016).

The fact that “one orchid/one pollinator” is a myth is not new knowledge, it’s been widely discussed in the pollination ecology literature for decades.  For example, in our 1996 paper “Generalization in Pollination Systems, and Why it Matters” we showed data from the late 19th/early 20th centuries that clearly indicated a range of specialization in European orchids (follow that link and look at  Figure 3B).  Even earlier than this, in his 1992 paper “Trends in the pollination ecology of the Orchidaceae: evolution and systematics” Raymond Tremblay showed that only about 62% of species for which he could find data had a single pollinator, and that this varied considerably between different subfamilies of Orchidaceae, with some subfamilies being more specialized than others.

More recently, in a chapter in the 2006 book I co-edited with Nick Waser entitled “Geographical Variation in Diversity and Specificity of Pollination Systems” Steve Johnson, Andrew Hingston and myself looked at data from southern African compared to North American and European orchids; here’s the figure from that assessment:

 

Ollerton et al Figure 7 - JPEG

Orchids  are more specialized in southern Africa compared to Europe and North America (as are a number of other plant groups including the asclepiads, which we’re comparing them with here).  But even in southern Africa, only about 65% of the orchids studied have a single pollinator species.  It’s worth pointing out, though, that many of the species included in this analysis, and in Raymond Tremblay’s paper, have been studied only at single sites and often in single years, meaning that we have no idea if there is any spatio-temporal variation in the pollinators a particular orchid species exploits.

Why does this myth persist?  I think it’s for the same reason that myths are retold from generation to generation: they are great stories that fascinate the teller and the audience.  Indeed, orchids are very special plants with some amazing floral and vegetative adaptations, fascinating relationships with fungi, and incredible diversity.  But we don’t have to mythologise their relationships with their pollinators to try to make orchids more special than they already are.

4 Comments

Filed under Bees, Biodiversity, History of science, Pollination

The decline of the “humble bee” – a short follow-up from yesterday’s post

The piece I posted yesterday about whether the names two of our most well known pollinators should be spelled honey bee/honeybee or bumblebee/bumble bee generated a lot of interesting comments on Facebook, Twitter, and on the blog.  A few people pointed me to the “Snodgrass Rule” that informal names should be combined only if the species concerned are not members of that particular taxon (e.g. “butterfly” rather than “butter fly”, because they are not “flies”), in which case “honey bee” and “bumble bee” are correct.

If I was ever aware of this entomological convention I’d certainly forgotten about it, but it strikes me that there’s a lot of examples outside of entomology that break the rule, e.g. hummingbird, goldfinch, catfish, ground ivy, etc.

A couple of commentators also asked me about the old term “humble bee”, as used in Frederick Sladen’s 1912 book “The Humble-Bee, its Life-History and How to Domesticate It”.  So I added this to the bumblebee/bumble bee search on the Google Ngram Viewer, taking the time frame back to 1500, and the results are very intriguing:

screen-shot-2017-03-01-at-09-59-55 It would appear that “bumble bee” pre-dates “humble bee” by a considerable period, with the former being superseded by the latter from the late 1600s onwards, until “humble bee/humblebee” started to decline in use from the end of the 19th century.

I’ve also searched using the term “dumbledore”, which is an old local name, but it was also applied to other buzzing insects such as chafers, making interpretation of the results difficult.  There’s more on the etymology of bumblebees on Wikipedia if you’d care to follow it up.

Many thanks to everyone who contributed to the discussion!

 

1 Comment

Filed under Bees, Biodiversity and culture, Honey bees

Honey bee or honeybee; bumblebee or bumble bee?

screen-shot-2017-02-28-at-10-18-20

Language is fascinating, particularly the way in which it changes over time to incorporate new words, or old words used differently.  In science this has important implications for understanding: semantics matter.  With this in mind I’ve been curious about the alternative ways in which authors write the informal names of species.  Scientific names (Genus species)  should be fairly stable in their spelling and presentation (though not always, especially in the older literature); but “common” names of species vary widely geographically and temporally.

Here’s an example using Google’s Ngram Viewer which is a useful tool for tracking changes in word use over time.  Different authors currently use the terms “honey bee” and “honeybee”, sometimes in the same publication.  But as the image above shows. historical analysis suggests that “honey bee” is the more traditional term, and that “honeybee” only came into common usage from the start of the 20th century, and by the late 1920s had taken over “honey bee”.

Likewise “bumblebee” and “bumble bee”; despite “bumble bee” having a much earlier usage, “bumblebee” has dominated since the late 19th century:

screen-shot-2017-02-28-at-10-16-51It’s interesting to speculate about what might have caused these shifts in use, and it’s possible that in these examples it was the publication of especially influential books that used one term over another and influenced subsequent writers.  Could make a good project for a student studying how use of language varies in different time periods.

For my own part I tend to prefer “honey bee” and “bumblebee”, but I can’t precisely articulate why; perhaps it’s because in Europe we talk about “the honey bee” as a single species (Apis mellifera) but not “the bumblebee” because there is usually more than one co-occurring Bombus species in a particular area.  Do others have a particular preference?

33 Comments

Filed under Bees, History of science, Honey bees

Links to some recent pollinator-related papers, posts, projects…. and pedals

oxalis-fly-p1030303

For weeks now I’ve been meaning to post some links to pollinator-related items that have caught my eye, but have only just found time to pull them together, hence some of these are a little dated but should still be of interest:

  • By pure coincidence Hazel Chapman (the senior author of that paper) came to Northampton a few weeks ago to give a seminar about her Nigerian Montane Forest Project which is well worth checking out and which, in the future, will have a large pollinator focus.
  • The Journal of Pollination Ecology (where I remain an editor) has a new volume out – it’s open access and has some really nice papers – here’s the link.
  • There’s been a few stories doing the rounds about robot pollinators and how they are going to replace insects.  It’s all nonsense, of course, and in a recent blog post Dave Goulson nails the arguments very well – see: Are robotic bees the future? [spoiler alert – the answer’s “No”].  Likewise, over on her blog, Manu Saunders opines that: “Artificial pollinators are cool, but not the solution“.  What the technologists who are promoting these ideas, and related concepts around the “Internet of Things”, don’t seem to get is that all of this tech has environmental costs associated with it: resource/pollution costs for making it; energy costs for using it; and disposal/pollution costs when it reaches the end of its life.  Applying a green wash of “let’s use drones for pollinating flowers” doesn’t make the tech any more environmentally sustainable, quite the opposite.  Sorry, rant over…
  • Ben Geslin and colleagues have written an interesting review in Advances in Ecological Research called “Massively Introduced Managed Species and Their Consequences for Plant–Pollinator Interactions” that focuses on both mass-flowering crop plants (e.g. oil seed rape) and domesticated, highly abundant pollinators such as honey bees, and what their increase might mean for natural communities of plants and pollinators, particularly in sensitive environments such as oceanic islands.
  • There’s a guitar effects pedal called the Pollinator – from the review:  “The Pollinator is a living thing, sensitive to its environment and surroundings, and it becomes an extension of the guitarist playing it.”  Quite.
  • Nine species of bee in the genus Perdita that are new to science have been described from localities in the the southwestern USA.  Here’s a link to a lovely video that shows these bees, their distinguishing features, and how they were named (mainly for characters from Shakespeare’s plays).  Not very impressed with the snarky “if scientists had bothered to look” title of the article though.
  • Finally, a new citizen science project has been launched designed to understand how hoverflies evolve mimicry of bees and wasps – looks interesting, please take part – here’s the link.  Just be aware, it’s a bit addictive!

As always, feel free to suggest links to items you found of interest.

1 Comment

Filed under Bees, Biodiversity, Birds, Hoverflies, Pollination, Wasps