Category Archives: Wasps

The evolution of pollination systems in one of the largest plant families: a new study just published – download it for free

Figure 1 JUNE revision

Interactions between flowering plants and the animals that pollinate them are known to be responsible for part of the tremendous diversity of the angiosperms, currently thought to number at least 350,000 species.  But the diversity of different types of pollination system (bird, bee, moth, fly, etc.) is unknown for most large, related groups of plants (what systematists term “clades”) such as families and subfamilies.  In addition we know little about how these interactions with pollinators have evolved over time and in different parts of the world.  Only a handful of groups of flower plants have been studied with respect to questions such as:

How much do we currently know about the diversity of pollination systems in a large clades?

How is that diversity partitioned between the smaller clades (e.g. subfamilies, tribes, genera) of a family, and what are the evolutionary transitions between the major groups of pollinators?

Do these pollination systems vary biogeographically across the clade’s range?

These sorts of questions have been addressed for the massive, globally distributed Apocynaceae (one of the top 10 or 11 largest angiosperm families with more than 5,300 species) in a study just published using a new database of pollinators of the family.  What’s more, the work is open access and anyone can download a copy for free.  Here’s the citation with a link to the paper:

Ollerton, J., Liede-Schumann, S., Endress, M E., Meve, U. et al. [75 authors in all] (2018) The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study. Annals of Botany (in press)

In this study we have shown that (among other things):

  • The family is characterised by an enormous diversity of pollination systems involving almost all of the major pollen vectors and some that are nearly unique to the Apocynaceae.
  • Earlier diverging clades have a narrower range of pollination systems than those that evolved later.
  • Transitions from one type of pollination system to another are evolutionarily constrained, and rarely or never occur, whereas others have taken place much more often, e.g. between wasp and beetle pollination.
  • There is significant convergent evolution of pollination systems, especially fly and moth pollination, by geographically and phylogenetically distinct clades.

You’ll notice that there are 75 (!) authors on this paper.  That’s because we’ve pulled together a huge amount of previously unpublished data and used some state of the art analyses to produce this work.  It was a monumental effort, especially considering that my colleague Sigrid Liede-Schumann and I only decided to push ahead with this project about a year ago when we chatted at the International Botanical Congress that I posted about at the timeIn truth however the origins of this paper go back over 20 years to 1997 when when Sigrid and I published a study of what was then known about pollination systems in the Asclepiadaceae (the asclepiads).

In that paper we said that the research “is intended to be ongoing…[we]…hope to re-review asclepiad pollination within the next decade”.  At the time I didn’t think it would actually take more than 20 years!  However over that period a lot has changed.  For one thing the Asclepiadaceae no longer exists, broken up and subsumed within a much larger Apocynaceae.  Also, I’ve done a lot of work in the field and in the herbarium on some of the smaller groups within the family, such as CeropegiaOthers, including many of my co-authors, have also been working on different groups in various parts of the world.  Finally the level of sophistication of the analyses we are now able to do has increased beyond recognition compared to what we could achieve in the mid-1990s.  All of this means that now is the right time to produce this study.

Having said all of that, this is still a work in progress.  Our Pollinators of Apocynaceae Database contains a sample of just over 10% of the species in the family.  So lots more data on plant-pollinator interactions needs to be collected before we say we fully understand how pollination systems have evolved in this most remarkable family.  I’d be happy to talk with anyone who is interested in the family and being involved in future data collection.

The database will be freely available to anyone who wants to use it – lots more can be done with this information and, once again, I’m happy to chat with potential collaborators.

I was recently interviewed about the study, and about plant-pollinator interactions and the Apocynaceae more generally, for the In Defense of Plants podcast – here’s a link to that interview.

Finally, I’d like to express my sincerest thanks to my co-authors on this study – I really couldn’t have done it without you guys!

Advertisements

2 Comments

Filed under Apocynaceae, Biodiversity, Biogeography, Evolution, Pollination, Wasps

British phenological records indicate high diversity and extinction rates among late-summer-flying pollinators – a recently published study

Balfour et al Figure 1

Natural history records of plant flowering and pollinator foraging, much of them collected by well informed amateurs, have huge scientific importance. One of the values of such records to ecology is that it allows us to document where these species occur in space and when they are active in time. This can be done at a range of spatial and temporal scales, but large-scale patterns (for example at a country level) are, I think, especially useful because they provide scientific evidence that can inform national conservation strategies.

During 2017 I collaborated with a young early career researcher at the University of Sussex, Dr Nick Balfour, on an analysis of the phenologies of British pollinators and insect pollinated plants.  That study was recently published (see citation below) and I think that the results are fascinating.

Nick did most of the leg work on this, which involved assessing more than one million records that document the activity times of aculeate wasps, bees, butterflies and hoverflies held in the databases by three of the UK’s main insect recording organisations, the Bees, Wasps and Ants Recording Society (BWARS), the UK Butterfly Monitoring Scheme (UKBMS) and the Hoverfly Recording Scheme (HRS).  Information on flowering times was taken from a standard British flora (Clapham et al. 1990 – Flora of the British Isles. Cambridge University Press).

As well as looking at annual flight periods and flowering trends for these organisms we also focused on pollinator and plant species that were endangered or extinct. Here are some headline results and thoughts on what the work shows:

  • About two-thirds (62%) of pollinator species peak in their flight times in the late summer (July and August), though there was some variation between the different groups – see the figure from the paper above).  Particularly noticeable was the double peak of the bees, with the first peak denoting the activity of many early-emerging solitary bees, such as species of the genus Andrena, whilst the second peak is other solitary bees plus of course the bumblebees which by that time have built up their colonies.
  • A rather fixed phenological pattern with respect to different types of plants was also apparent, which I was not expecting at all: insect pollinated trees tend to flower first, followed by shrubs, then herbaceous species (again, refer to the figure above). This might be because larger plants such as trees and shrubs can store more resources from the previous year that will give them a head start in flowering the following year, but that idea needs testing.
  • Putting those first two points together, what it means is that trees tend to be pollinated by those earlier emerging bees and hoverflies, whereas the herbs are mainly pollinated by species that are active later.
  • When looking at the extinct and endangered pollinators, the large majority of them (83%) were species with a peak flight times in the late summer, a much larger proportion than would be expected given that 62% of all species are active at that time. However this was mainly influenced by extinct bee species and the same pattern was not observed in other groups.
  • The obvious explanation for that last point is that historical changes in land use have led to a dramatic reduction in late summer flowering herbaceous species and the subsequent loss of floral resources has been highly detrimental to those bees. But intriguingly no such pattern was apparent for the endangered pollinators and clearly there are complex reasons why pollinators should become rare or extinct, a point that I have discussed previously on the blog.
  • The lack of late summer flowering resources for pollinators is a contentious issue however as plant conservation groups have in the past recommend that meadows and road verges are cut in late summer to maximise plant species richness.  Mowing road verges once or twice a year certainly benefits plant diversity, as this recent review by Jakobsson et al. (2018) demonstrates.  But there’s very little data available that assesses how timing of cutting can affect pollinators.  The only study that I know of (and if I’ve missed any, please let me know) that has considered this is the PhD work of one of my former students, Dr Sam Tarrant who looked at pollinators and plants on restored landfill sites compared to nearby nature reserves.  In a paper that we published in the journal Restoration Ecology in 2012 we showed that on restored landfill sites the abundance of pollinators in autumn surveys (conducted September-October) was just as high as for summer surveys.  On nature reserves, which are routinely cut from mid-July onward, this was not the case.

Here’s the full citation of Nick’s study with a link to the publisher’s website, and a copy of the abstract is below.  If anyone wants a PDF, drop me a line:

Balfour, N., Ollerton, J., Castellanos, M.C., Ratnieks, F.L.W. (2018) British phenological records indicate high diversity and extinction rates among late-summer-flying pollinators. Biological Conservation 222: 278-283

Abstract:

The long-term decline of wild and managed insect pollinators is a threat to both agricultural output and biodiversity, and has been linked to decreasing floral resources. Further insight into the temporal relationships of pollinators and their flowering partners is required to inform conservation efforts. Here we examined the
phenology of British: (i) pollinator activity; (ii) insect-pollinated plant flowering; and (iii) extinct and endangered pollinator and plant species. Over 1 million records were collated from the historical databases of three British insect monitoring organisations, a global biodiversity database and an authoritative text covering the national flora. Almost two-thirds (62%) of pollinator species have peak flight observations during late-summer
(July and August). This was the case across three of the groups studied: aculeate wasps (71% of species), bees (60%), and butterflies (72%), the exception being hoverflies (49%). When species geographical range (a proxy for abundance) was accounted for, a clear late-summer peak was clear across all groups. By contrast, there is marked temporal partitioning in the flowering of the major plant groups: insect-pollinated tree species blossoming predominantly during May (74%), shrubs in June (69%), and herbs in July (83%). There was a positive correlation between the number of pollinator species on the wing and the richness of both flowering insect pollinated herbs and trees/shrubs species, per calendar month. In addition, significantly greater extinctions occurred in late-summer-flying pollinator species than expected (83% of extinct species vs. 62% of all species). This trend was driven primarily by bee extinctions (80% vs. 60%) and was not apparent in other groups. We contend that this is principally due to declines in late-summer resource supplies, which are almost entirely provisioned by herbs, a consequence of historical land-use change. We hypothesize that the seasonality of interspecific competition and the blooming of trees and mass-flowering crops may have partially buffered spring flying pollinators from the impacts of historical change.

9 Comments

Filed under Bees, Biodiversity, Butterflies, Hoverflies, Macroecology, Pollination, Wasps

Pollinators, flowers, natural selection and speciation: a virtual conference

Ashy Mining Bee 2017-06-17 10.55.45

It’s been a couple of years since I posted my previous “virtual conferences” on Pollinators, Pollination and Flowers and Ecology and Climate Change, a lapse that has largely been due to lack of time (my default excuse for most things these days….).  However Judith Trunschke at Uppsala University in Sweden has risen to the challenge of guest-curating her own virtual conference*.  The theme here is how pollinators impose (or sometimes don’t impose) natural selection on flowers that results in the formation of new plant species:

Timo van der Niet (IIASA 2010): Plant-diversification through pollinator shifts

Timo van der Niet (Congresos UCA 2014): Disentangling the contribution of pollinators in shaping angiosperm orchid genus Satyrium

Anne Royer (Evolution 2016): Plant-pollinator association doesn’t explain disruptive selection & reproductive isolation

Brandon Campitelli (Evolution 2016): Pollinator-mediated selection and quantitative genetics

Yuval Sapir (Evolution 2016): Rethinking flower evolution in irises: are pollinators the agents of selection?

Ruth Rivken (Evolution 2014): The mechanisms of frequency-dependent selection in gynodiocious Lobelia siphilitica

Gonzalo Bilbao (Botany 2017): Pollinator-mediated convergent shape evolution in tropical legumes

My grateful thanks to Judith for curating this great set of talks; if anyone else would like to do the same, please get in touch.

Feel free to discuss the talks in the comments section and to post links to other talks on the same topic.

 

*I’m assuming that, as all of these videos are in the public domain, none of the presenters or copyright owners objects to them being presented here.  If you do, please get in touch and I’ll remove it.

Leave a comment

Filed under Bees, Biodiversity, Birds, Butterflies, Evolution, Honey bees, Hoverflies, Mutualism, Pollination, Wasps

Pollinator biodiversity and why it’s important: a new review just published – download it for free

P1110763

In a new review paper that’s just been published in the Annual Review of Ecology, Evolution and Systematics I have looked at the question of just how diverse the pollinators are, and why pollinator biodiversity is ecologically important and therefore worthy of conservation.  I’ve taken a deep time and wide space approach to this, starting with what the fossil record tells us about when animal pollination evolved and the types of organisms that acted as pollinators in the past (the answer may surprise you if you’re unfamiliar with the recent paleontological literature on this topic).  Some of the most prominent biogeographical patterns have been highlighted, and I have tried to estimate the global diversity of currently known pollinators.  A conclusion is that as many as 1 in 10 described animal species may act as pollen vectors.

As well as this descriptive part of the review I’ve summarised some recent literature on why pollinator diversity matters, and how losing that diversity can affect fruit and seed set in natural and agricultural contexts.  Extinction of pollinator species locally, regionally, and globally should concern us all.

Although I was initially a little worried that the review was too broad and unfocused, having re-read it I’m pleased that I decided to approach the topic in this way.  The research literature, public policy, and conservation efforts are currently moving at such a fast pace that I think it’s a good time to pause and look at the bigger picture of what “Saving the Pollinators” actually means and why it’s so important.  I hope you agree and I’d be happy to receive feedback.

You can download a PDF of the review entitled Pollinator Diversity: Distribution, Ecological Function, and Conservation by following that link.

Pollination ecologists should also note that in this same volume of Annual Review of Ecology, Evolution and Systematics there’s a review by Spencer Barrett and Lawrence Harder called The Ecology of Mating and Its Evolutionary Consequences in Seed Plants.  If you contact those authors I’m sure they’d let you have a copy.

10 Comments

Filed under Apocynaceae, Bees, Biodiversity, Biogeography, Birds, Butterflies, Climate change, Ecosystem services, Evolution, Honey bees, Hoverflies, IPBES, Macroecology, Mammals, Moths, Mutualism, Neonicotinoids, Pollination, Urban biodiversity, Wasps

The Buzz Club: citizen scientists protecting pollinators

Buzz Club 1.png

This is a guest post by Charlie Dance who is Development Officer at The Buzz Club.


It’s hard to over-stress the importance of pollinators. Not only do they play an indispensable role in global food security, they’re also essential in maintaining the diversity of plant species in natural habitats, thus supporting nature as a whole. The UK is home to thousands of different pollinators including bees, wasps and hoverflies. However, while many of these species seem to be declining or disappearing, we know surprisingly little about the majority of them. Why are some disappearing, and how quickly is it happening? What can we do to help? How can we turn our gardens into pollinator havens? It was to help answer questions like these that the Buzz Club was founded in 2015.

Run by volunteers at the University of Sussex, The Buzz Club is a citizen-science charity using the power of the public to provide important data on pollinators. We run a variety of nationwide surveys and experiments suitable for all ages and ideal for wildlife and gardening enthusiasts. Furthermore, we provide information about how to make our urban landscapes more pollinator friendly.

For more information and for a list of current projects, please visit our website: http://thebuzzclub.uk/

As a membership-based organisation, we rely on the small donation of £2 per month from members, all of which goes directly towards running the charity. Not only do new members receive a complementary welcome pack containing a specially designed seed mix, bee identification chart, pollinator-friendly gardening guide, magnifying lens and stickers (see photo below), they also get to learn more about pollinators whilst helping to generate useful data that can be used in our projects.

We believe that with your help we can find out how best to conserve bees and other pollinators. Our ultimate goal is to ensure that we look after insects, giving them and us a future.

Join the Buzz Club here: https://alumni.sussex.ac.uk/buzzclub

Facebook: http://www.facebook.com/TheBuzzClubUK

Twitter: http://www.twitter.com/The_Buzz_Club


From Jeff:  if citizen science is your thing, don’t forget that the Ivy Pollinators project will run again this year: https://jeffollerton.wordpress.com/2016/10/11/ivy-pollinators-citizen-science-project/

 

Buzz Club 2.png

Leave a comment

Filed under Bees, Biodiversity, Butterflies, Ecosystem services, Gardens, Hoverflies, Moths, Pollination, Urban biodiversity, Wasps

6000 scientists can’t be wrong: the International Botanical Congress 2017

IBC 1

A late afternoon flight from Heathrow got me to Beijing International Airport just in time for me to enjoy a nine hour delay in my connecting flight to Shenzhen in southern China.  I finally arrived at my hotel at 2:15am, exhausted and sweaty in the 30 degree night time heat.  The one consolation is the the hotel was short of rooms so upgraded me to a suite the size of a small city, with a shower like a tropical rainstorm.  Perfect to wash off the dirt of travelling before collapsing into bed.

Why am I here and why is the hotel short of rooms?  Because 6000 scientists have descended on Shenzhen for the 19th International Botanical Congress (IBC).  The IBC is a six-yearly event that rotates around the world; I attended in 1999 in St Louis and 2005 in Vienna, but missed Melbourne in 2011.  At this IBC I’m giving two talks, one at the beginning and one at the end of the conference.  More on that later in the week.

Six thousand botanists need a big conference venue and this morning, after a late breakfast, I strolled up to the convention centre where it’s being held.  It’s enormous, the scale of the thing is overwhelming.  I wandered around whilst they were getting ready for registration opening this afternoon and took some images on my phone.

IBC 2IBC 3IBC 4

There are some fabulous displays of living plants, including this one at the main entrance:

IBC 5

These are attracting pollinators: in 10 minutes I counted lots of honey bees, one butterfly, at least two species of wasps, and a large carpenter bee (Xylocopa sp.) visiting flowers.  I only managed to photograph the first two though:

IBC 7

IBC 6

On the way back to my hotel I gatecrashed an international turtle expo.  Who knew turtles were such a big thing in China….?

OK, that’s all for now: I have to head back to the convention centre to register, so I’ll leave you with the view I’m seeing from where I’m writing this.  Shenzhen is quite a place and I’ll write more about it later in the week:

IBC 8

15 Comments

Filed under Bees, Biodiversity, Butterflies, Honey bees, Pollination, Urban biodiversity, Wasps

Plant-pollinator networks, the time dimension, and conservation: a new study just published

Biella network

After rather a long gestation period, involving much re-analysis and rewriting, we’ve finally published Paolo Biella’s research from his Master’s thesis.  It’s a really neat plant-pollinator network study from mid-elevation grasslands in Italy’s Northern Apennine.  In it we have considered the way in which such networks could be analysed in relation to plant phenology (i.e. the timing of when they flower) rather than arbitrary time slices (e.g. months, weeks).  We have also discussed how this approach may inform conservation strategies in grasslands such as these.  The full citation with a link is:

Biella, P., Ollerton, J., Barcella, M. & Assini, S. (2017) Network analysis of phenological units to detect important species in plant-pollinator assemblages: can it inform conservation strategies?  Community Ecology 18: 1-10 

I’m happy to send a PDF to anyone who is interested in seeing the full study.

Here’s the abstract:

Conservation of species is often focused either only on those that are endangered, or on maximising the number recorded on species lists. However, species share space and time with others, thus interacting and building frameworks of relationships that can be unravelled by community-level network analysis. It is these relationships that ultimately drive ecosystem function via the transfer of energy and nutrients. However interactions are rarely considered in conservation planning. Network analysis can be used to detect key species (“hubs”) that play an important role in cohesiveness of networks. We applied this approach to plant-pollinator communities on two montane Northern Apennine grasslands, paying special attention to the modules and the identity of hubs. We performed season-wide sampling and then focused the network analyses on time units consistent with plant phenology. After testing for significance of modules, only some modules were found to be significantly segregated from others. Thus, networks were organized around a structured core of modules with a set of companion species that were not organized into compartments. Using a network approach we obtained a list of important plant and pollinator species, including three Network Hubs of utmost importance, and other hubs of particular biogeographical interest. By having a lot of links and high partner diversity, hubs should convey stability to networks. Due to their role in the networks, taking into account such key species when considering the management of sites could help to preserve the greatest number of interactions and thus support many other species.

4 Comments

Filed under Bees, Biodiversity, Butterflies, Hoverflies, Pollination, Wasps

Generalist pollination can evolve from more specialised interactions: a new study just published

2013-11-24 15.44.01

There’s a long-standing idea in biology that ecological specialisation is an evolutionary “dead end” from which species can never emerge.  In other words, if a species becomes so adapted to a particular ecological strategy (could be feeding or habitat requirements or how it interacts with other species ) then no amount of natural selection will result in its descendants evolving different strategies, thereby diversifying into new species.  In particular it’s traditionally thought that evolving broader, “generalist” strategies from narrower, “specialised” ones is highly unlikely.

This has been much discussed in the literature on the ecology and evolution of pollination systems, where traditionally this “dead end” scenario has been accepted.  However a small number of case studies have shown that generalised pollination systems can evolve within much more specialised clades, beginning with Scott Armbruster and Bruce Baldwin’s study of Madagascan Dalechampia (Euphorbiaceae), published in Nature in 1998.

To this limited body of examples we can now add another case study: in the genus Miconia (Melastomataceae), generalist nectar/pollen rewarding strategies can evolve within a clade of plants that predominantly uses a more specialised, buzz-pollinated strategy involving just bees.

The work is part of the PhD research of Vinicius de Brito who is one of the researchers I was privileged to do some field work with in Brazil when I was there in 2013 – see my post: “It’s called rainforest for a reason, right?  Brazil Diary 6“.  Vini is the guy on the left of the photo accompanying this post.  Here’s the citation and a link:

de Brito, V.L.G., Rech, A.R., Ollerton, J., Sazima, M. (2017) Nectar production, reproductive success and the evolution of generalised pollination within a specialised pollen-rewarding plant family: a case study using Miconia theizans. Plant Systematics and Evolution doi:10.1007/s00606-017-1405-z 

Here’s the abstract:

Generalist plant–pollinator interactions are prevalent in nature. Here, we untangle the role of nectar production in the visitation and pollen release/deposition in Miconia theizans, a nectar-rewarding plant within the specialised pollen-rewarding plant family Melastomataceae. We described the visitation rate, nectar dynamics and pollen release from the poricidal anthers and deposition onto stigmas during flower anthesis. Afterwards, we used a linear mixed model selection approach to understand the relationship between pollen and nectar availability and insect visitation rate and the relationship between visitation rate and reproductive success. Miconia theizans was visited by 86 insect species, including buzzing and non-buzzing bees, wasps, flies, hoverflies, ants, beetles, hemipterans, cockroaches and butterflies. The nectar produced explained the visitation rate, and the pollen release from the anthers was best explained by the visitation rate of pollinivorous species. However, the visitation rates could not predict pollen deposition onto stigmas. Nectar production may explain the high insect diversity and led to an increase in reproductive success, even with unpredictable pollen deposition, indicating the adaptive value of a generalised pollination system.

As always, I’m happy to send a PDF to anyone who wants a copy, just drop me an email.

2 Comments

Filed under Bees, Biodiversity, Brazil, Butterflies, Evolution, Hoverflies, Mutualism, Pollination, Wasps

Links to some recent pollinator-related papers, posts, projects…. and pedals

oxalis-fly-p1030303

For weeks now I’ve been meaning to post some links to pollinator-related items that have caught my eye, but have only just found time to pull them together, hence some of these are a little dated but should still be of interest:

  • By pure coincidence Hazel Chapman (the senior author of that paper) came to Northampton a few weeks ago to give a seminar about her Nigerian Montane Forest Project which is well worth checking out and which, in the future, will have a large pollinator focus.
  • The Journal of Pollination Ecology (where I remain an editor) has a new volume out – it’s open access and has some really nice papers – here’s the link.
  • There’s been a few stories doing the rounds about robot pollinators and how they are going to replace insects.  It’s all nonsense, of course, and in a recent blog post Dave Goulson nails the arguments very well – see: Are robotic bees the future? [spoiler alert – the answer’s “No”].  Likewise, over on her blog, Manu Saunders opines that: “Artificial pollinators are cool, but not the solution“.  What the technologists who are promoting these ideas, and related concepts around the “Internet of Things”, don’t seem to get is that all of this tech has environmental costs associated with it: resource/pollution costs for making it; energy costs for using it; and disposal/pollution costs when it reaches the end of its life.  Applying a green wash of “let’s use drones for pollinating flowers” doesn’t make the tech any more environmentally sustainable, quite the opposite.  Sorry, rant over…
  • Ben Geslin and colleagues have written an interesting review in Advances in Ecological Research called “Massively Introduced Managed Species and Their Consequences for Plant–Pollinator Interactions” that focuses on both mass-flowering crop plants (e.g. oil seed rape) and domesticated, highly abundant pollinators such as honey bees, and what their increase might mean for natural communities of plants and pollinators, particularly in sensitive environments such as oceanic islands.
  • There’s a guitar effects pedal called the Pollinator – from the review:  “The Pollinator is a living thing, sensitive to its environment and surroundings, and it becomes an extension of the guitarist playing it.”  Quite.
  • Nine species of bee in the genus Perdita that are new to science have been described from localities in the the southwestern USA.  Here’s a link to a lovely video that shows these bees, their distinguishing features, and how they were named (mainly for characters from Shakespeare’s plays).  Not very impressed with the snarky “if scientists had bothered to look” title of the article though.
  • Finally, a new citizen science project has been launched designed to understand how hoverflies evolve mimicry of bees and wasps – looks interesting, please take part – here’s the link.  Just be aware, it’s a bit addictive!

As always, feel free to suggest links to items you found of interest.

1 Comment

Filed under Bees, Biodiversity, Birds, Hoverflies, Pollination, Wasps

What’s green, waxy and smells of cheese? The flowers of Deherainia smaragdina!

img_2908

A tweet this morning from Chris Howell at Birmingham Botanical Garden reminded me that for some time I’ve been meaning to post up images of an enigmatic flower that has intrigued me for over a decade, ever since I encountered it in the Palm House at Kew.

It was the smell that I first noticed: strong and pungent like a ripe blue cheese, or unwashed feet.  This drew me to a small, evergreen shrub with the wonderfully eliding name of Deherainia smaragdina, a Mexican member of the primula family (Primulaceae) though older sources put it in the Theophrastaceae, a family no longer recognised by most botanists.

cheese-tree-1

At first I couldn’t spot where the smell was coming from, then I saw the flowers: larger than I was expecting (a couple of centimetres across) given that they were not immediately obvious, and very waxy and stiff to the touch.  In fact (to the human eye) it was quite well camouflaged against the plant’s own leaves, not at all what one expects from a flower.  However camouflaged flowers that rely only on scent for attracting insects are not unknown in the plant kingdom, and probably under-recorded: see for example Adam Shuttleworth and Steve Johnson’s work on wasp-pollinated flowers of asclepiads (Apocynaceae) in South Africa, where the “cryptic colouring” is similar in reflectance to the background vegetation.  “Smaragdine” means emerald-like, so a very fitting species name.

The scent tends to come and go, perhaps affected by temperature or light levels.  Under the scanning electron microscope the surface of the petals has some intriguing bulbous cells (which I’d hypothesise produce the scent) and the wavy, waxy covering of the cuticle is clearly visible:

deherainia-close1

deherainia-close2

Another intriguing thing about Deherainia smaragdina is that the bisexual flowers are in a male phase when they first open, moving into female phase only after a day or two. Compare the two flowers below.  In the male phase (left) the pollen-bearing stamens are centered in the flower, hiding the female stigma (which is probably not receptive at this stage); over time the stamens move outwards to expose the stigma and the flower goes into female phase (the flower on the right):

cheese-tree-3

Why this plant should smell of cheese is a mystery, but it’s probably attracting a particular type of pollinator – though what they are no one knows !  It’s never been studied, as far as I’m aware.  We might predict from the scent that it’s flies, but I think that wasps are also a possibility.  If anyone is doing field work in the parts of Mexico where this plant grows, please look out for it and try to photograph flower visitors: I’d love to hear from you!

3 Comments

Filed under Biodiversity, Pollination, Wasps