Category Archives: Wasps

6000 scientists can’t be wrong: the International Botanical Congress 2017

IBC 1

A late afternoon flight from Heathrow got me to Beijing International Airport just in time for me to enjoy a nine hour delay in my connecting flight to Shenzhen in southern China.  I finally arrived at my hotel at 2:15am, exhausted and sweaty in the 30 degree night time heat.  The one consolation is the the hotel was short of rooms so upgraded me to a suite the size of a small city, with a shower like a tropical rainstorm.  Perfect to wash off the dirt of travelling before collapsing into bed.

Why am I here and why is the hotel short of rooms?  Because 6000 scientists have descended on Shenzhen for the 19th International Botanical Congress (IBC).  The IBC is a six-yearly event that rotates around the world; I attended in 1999 in St Louis and 2005 in Vienna, but missed Melbourne in 2011.  At this IBC I’m giving two talks, one at the beginning and one at the end of the conference.  More on that later in the week.

Six thousand botanists need a big conference venue and this morning, after a late breakfast, I strolled up to the convention centre where it’s being held.  It’s enormous, the scale of the thing is overwhelming.  I wandered around whilst they were getting ready for registration opening this afternoon and took some images on my phone.

IBC 2IBC 3IBC 4

There are some fabulous displays of living plants, including this one at the main entrance:

IBC 5

These are attracting pollinators: in 10 minutes I counted lots of honey bees, one butterfly, at least two species of wasps, and a large carpenter bee (Xylocopa sp.) visiting flowers.  I only managed to photograph the first two though:

IBC 7

IBC 6

On the way back to my hotel I gatecrashed an international turtle expo.  Who knew turtles were such a big thing in China….?

OK, that’s all for now: I have to head back to the convention centre to register, so I’ll leave you with the view I’m seeing from where I’m writing this.  Shenzhen is quite a place and I’ll write more about it later in the week:

IBC 8

9 Comments

Filed under Bees, Biodiversity, Butterflies, Honey bees, Pollination, Urban biodiversity, Wasps

Plant-pollinator networks, the time dimension, and conservation: a new study just published

Biella network

After rather a long gestation period, involving much re-analysis and rewriting, we’ve finally published Paolo Biella’s research from his Master’s thesis.  It’s a really neat plant-pollinator network study from mid-elevation grasslands in Italy’s Northern Apennine.  In it we have considered the way in which such networks could be analysed in relation to plant phenology (i.e. the timing of when they flower) rather than arbitrary time slices (e.g. months, weeks).  We have also discussed how this approach may inform conservation strategies in grasslands such as these.  The full citation with a link is:

Biella, P., Ollerton, J., Barcella, M. & Assini, S. (2017) Network analysis of phenological units to detect important species in plant-pollinator assemblages: can it inform conservation strategies?  Community Ecology 18: 1-10 

I’m happy to send a PDF to anyone who is interested in seeing the full study.

Here’s the abstract:

Conservation of species is often focused either only on those that are endangered, or on maximising the number recorded on species lists. However, species share space and time with others, thus interacting and building frameworks of relationships that can be unravelled by community-level network analysis. It is these relationships that ultimately drive ecosystem function via the transfer of energy and nutrients. However interactions are rarely considered in conservation planning. Network analysis can be used to detect key species (“hubs”) that play an important role in cohesiveness of networks. We applied this approach to plant-pollinator communities on two montane Northern Apennine grasslands, paying special attention to the modules and the identity of hubs. We performed season-wide sampling and then focused the network analyses on time units consistent with plant phenology. After testing for significance of modules, only some modules were found to be significantly segregated from others. Thus, networks were organized around a structured core of modules with a set of companion species that were not organized into compartments. Using a network approach we obtained a list of important plant and pollinator species, including three Network Hubs of utmost importance, and other hubs of particular biogeographical interest. By having a lot of links and high partner diversity, hubs should convey stability to networks. Due to their role in the networks, taking into account such key species when considering the management of sites could help to preserve the greatest number of interactions and thus support many other species.

Leave a comment

Filed under Bees, Biodiversity, Butterflies, Hoverflies, Pollination, Wasps

Generalist pollination can evolve from more specialised interactions: a new study just published

2013-11-24 15.44.01

There’s a long-standing idea in biology that ecological specialisation is an evolutionary “dead end” from which species can never emerge.  In other words, if a species becomes so adapted to a particular ecological strategy (could be feeding or habitat requirements or how it interacts with other species ) then no amount of natural selection will result in its descendants evolving different strategies, thereby diversifying into new species.  In particular it’s traditionally thought that evolving broader, “generalist” strategies from narrower, “specialised” ones is highly unlikely.

This has been much discussed in the literature on the ecology and evolution of pollination systems, where traditionally this “dead end” scenario has been accepted.  However a small number of case studies have shown that generalised pollination systems can evolve within much more specialised clades, beginning with Scott Armbruster and Bruce Baldwin’s study of Madagascan Dalechampia (Euphorbiaceae), published in Nature in 1998.

To this limited body of examples we can now add another case study: in the genus Miconia (Melastomataceae), generalist nectar/pollen rewarding strategies can evolve within a clade of plants that predominantly uses a more specialised, buzz-pollinated strategy involving just bees.

The work is part of the PhD research of Vinicius de Brito who is one of the researchers I was privileged to do some field work with in Brazil when I was there in 2013 – see my post: “It’s called rainforest for a reason, right?  Brazil Diary 6“.  Vini is the guy on the left of the photo accompanying this post.  Here’s the citation and a link:

de Brito, V.L.G., Rech, A.R., Ollerton, J., Sazima, M. (2017) Nectar production, reproductive success and the evolution of generalised pollination within a specialised pollen-rewarding plant family: a case study using Miconia theizans. Plant Systematics and Evolution doi:10.1007/s00606-017-1405-z 

Here’s the abstract:

Generalist plant–pollinator interactions are prevalent in nature. Here, we untangle the role of nectar production in the visitation and pollen release/deposition in Miconia theizans, a nectar-rewarding plant within the specialised pollen-rewarding plant family Melastomataceae. We described the visitation rate, nectar dynamics and pollen release from the poricidal anthers and deposition onto stigmas during flower anthesis. Afterwards, we used a linear mixed model selection approach to understand the relationship between pollen and nectar availability and insect visitation rate and the relationship between visitation rate and reproductive success. Miconia theizans was visited by 86 insect species, including buzzing and non-buzzing bees, wasps, flies, hoverflies, ants, beetles, hemipterans, cockroaches and butterflies. The nectar produced explained the visitation rate, and the pollen release from the anthers was best explained by the visitation rate of pollinivorous species. However, the visitation rates could not predict pollen deposition onto stigmas. Nectar production may explain the high insect diversity and led to an increase in reproductive success, even with unpredictable pollen deposition, indicating the adaptive value of a generalised pollination system.

As always, I’m happy to send a PDF to anyone who wants a copy, just drop me an email.

2 Comments

Filed under Bees, Biodiversity, Brazil, Butterflies, Evolution, Hoverflies, Mutualism, Pollination, Wasps

Links to some recent pollinator-related papers, posts, projects…. and pedals

oxalis-fly-p1030303

For weeks now I’ve been meaning to post some links to pollinator-related items that have caught my eye, but have only just found time to pull them together, hence some of these are a little dated but should still be of interest:

  • By pure coincidence Hazel Chapman (the senior author of that paper) came to Northampton a few weeks ago to give a seminar about her Nigerian Montane Forest Project which is well worth checking out and which, in the future, will have a large pollinator focus.
  • The Journal of Pollination Ecology (where I remain an editor) has a new volume out – it’s open access and has some really nice papers – here’s the link.
  • There’s been a few stories doing the rounds about robot pollinators and how they are going to replace insects.  It’s all nonsense, of course, and in a recent blog post Dave Goulson nails the arguments very well – see: Are robotic bees the future? [spoiler alert – the answer’s “No”].  Likewise, over on her blog, Manu Saunders opines that: “Artificial pollinators are cool, but not the solution“.  What the technologists who are promoting these ideas, and related concepts around the “Internet of Things”, don’t seem to get is that all of this tech has environmental costs associated with it: resource/pollution costs for making it; energy costs for using it; and disposal/pollution costs when it reaches the end of its life.  Applying a green wash of “let’s use drones for pollinating flowers” doesn’t make the tech any more environmentally sustainable, quite the opposite.  Sorry, rant over…
  • Ben Geslin and colleagues have written an interesting review in Advances in Ecological Research called “Massively Introduced Managed Species and Their Consequences for Plant–Pollinator Interactions” that focuses on both mass-flowering crop plants (e.g. oil seed rape) and domesticated, highly abundant pollinators such as honey bees, and what their increase might mean for natural communities of plants and pollinators, particularly in sensitive environments such as oceanic islands.
  • There’s a guitar effects pedal called the Pollinator – from the review:  “The Pollinator is a living thing, sensitive to its environment and surroundings, and it becomes an extension of the guitarist playing it.”  Quite.
  • Nine species of bee in the genus Perdita that are new to science have been described from localities in the the southwestern USA.  Here’s a link to a lovely video that shows these bees, their distinguishing features, and how they were named (mainly for characters from Shakespeare’s plays).  Not very impressed with the snarky “if scientists had bothered to look” title of the article though.
  • Finally, a new citizen science project has been launched designed to understand how hoverflies evolve mimicry of bees and wasps – looks interesting, please take part – here’s the link.  Just be aware, it’s a bit addictive!

As always, feel free to suggest links to items you found of interest.

1 Comment

Filed under Bees, Biodiversity, Birds, Hoverflies, Pollination, Wasps

What’s green, waxy and smells of cheese? The flowers of Deherainia smaragdina!

img_2908

A tweet this morning from Chris Howell at Birmingham Botanical Garden reminded me that for some time I’ve been meaning to post up images of an enigmatic flower that has intrigued me for over a decade, ever since I encountered it in the Palm House at Kew.

It was the smell that I first noticed: strong and pungent like a ripe blue cheese, or unwashed feet.  This drew me to a small, evergreen shrub with the wonderfully eliding name of Deherainia smaragdina, a Mexican member of the primula family (Primulaceae) though older sources put it in the Theophrastaceae, a family no longer recognised by most botanists.

cheese-tree-1

At first I couldn’t spot where the smell was coming from, then I saw the flowers: larger than I was expecting (a couple of centimetres across) given that they were not immediately obvious, and very waxy and stiff to the touch.  In fact (to the human eye) it was quite well camouflaged against the plant’s own leaves, not at all what one expects from a flower.  However camouflaged flowers that rely only on scent for attracting insects are not unknown in the plant kingdom, and probably under-recorded: see for example Adam Shuttleworth and Steve Johnson’s work on wasp-pollinated flowers of asclepiads (Apocynaceae) in South Africa, where the “cryptic colouring” is similar in reflectance to the background vegetation.  “Smaragdine” means emerald-like, so a very fitting species name.

The scent tends to come and go, perhaps affected by temperature or light levels.  Under the scanning electron microscope the surface of the petals has some intriguing bulbous cells (which I’d hypothesise produce the scent) and the wavy, waxy covering of the cuticle is clearly visible:

deherainia-close1

deherainia-close2

Another intriguing thing about Deherainia smaragdina is that the bisexual flowers are in a male phase when they first open, moving into female phase only after a day or two. Compare the two flowers below.  In the male phase (left) the pollen-bearing stamens are centered in the flower, hiding the female stigma (which is probably not receptive at this stage); over time the stamens move outwards to expose the stigma and the flower goes into female phase (the flower on the right):

cheese-tree-3

Why this plant should smell of cheese is a mystery, but it’s probably attracting a particular type of pollinator – though what they are no one knows !  It’s never been studied, as far as I’m aware.  We might predict from the scent that it’s flies, but I think that wasps are also a possibility.  If anyone is doing field work in the parts of Mexico where this plant grows, please look out for it and try to photograph flower visitors: I’d love to hear from you!

3 Comments

Filed under Biodiversity, Pollination, Wasps

Managing for Pollinators – a special issue of the Natural Areas Journal

Inula at Ravensthorpe 20160710_145426The October issue of the Natural Areas Journal is a special one devoted to the topic of “Managing for Pollinators”.  All of the papers have a North American focus but I think that they will be of general interest to anyone, anywhere in the world, who is concerned with how best to manage habitats for pollinators.  Here’s the contents page of the issue, copied and pasted from the site; I’m not sure if the full text links will work if you or your institution does not have full text access, but you should at least be able to view the abstracts:

Editorial: Pollinators are in Our Nature Full Access

Introduction by USFS Chief Tidwell – Pollinators and Pollination open access

pg(s) 361–361

Citation : Full Text : PDF (227 KB)

National Seed Strategy: Restoring Pollinator Habitat Begins with the Right Seed in the Right Place at the Right Time Full Access

Peggy Olwell and Lindsey Riibe
pg(s) 363–365

Citation : Full Text : PDF (1479 KB)

Hummingbird Conservation in Mexico: The Natural Protected Areas System Full Access

M.C. Arizmendi, H. Berlanga, C. Rodríguez-Flores, V. Vargas-Canales, L. Montes-Leyva and R. Lira
pg(s) 366–376

Abstract & References : Full Text : PDF (1302 KB)

Floral Guilds of Bees in Sagebrush Steppe: Comparing Bee Usage of Wildflowers Available for Postfire Restoration Full Access

James H. Cane and Byron Love
pg(s) 377–391

Abstract & References : Full Text : PDF (1500 KB)

The Role of Floral Density in Determining Bee Foraging Behavior: A Natural Experiment Full Access

Bethanne Bruninga-Socolar, Elizabeth E. Crone and Rachael Winfree
pg(s) 392–399

Abstract & References : Full Text : PDF (1219 KB)

Common Methods for Tallgrass Prairie Restoration and Their Potential Effects on Bee Diversity Full Access

Alexandra Harmon-Threatt and Kristen Chin
pg(s) 400–411

Abstract & References : Full Text : PDF (300 KB)

Status, Threats and Conservation Recommendations for Wild Bumble Bees (Bombus spp.) in Ontario, Canada: A Review for Policymakers and Practitioners Full Access

Sheila R. Colla
pg(s) 412–426

Abstract & References : Full Text : PDF (420 KB)

Conserving Pollinators in North American Forests: A Review Full Access

James L. Hanula, Michael D. Ulyshen and Scott Horn
pg(s) 427–439

Abstract & References : Full Text : PDF (1711 KB)

Dispersal Limitation, Climate Change, and Practical Tools for Butterfly Conservation in Intensively Used Landscapes Full Access

Laura E. Coristine, Peter Soroye, Rosana Nobre Soares, Cassandra Robillard and Jeremy T. Kerr
pg(s) 440–452

Abstract & References : Full Text : PDF (4647 KB) : Supplementary Materials

Revised State Wildlife Action Plans Offer New Opportunities for Pollinator Conservation in the USA Full Access

Jonathan R. Mawdsley and Mark Humpert
pg(s) 453–457

Abstract & References : Full Text : PDF (249 KB)

Diet Overlap of Mammalian Herbivores and Native Bees: Implications for Managing Co-occurring Grazers and Pollinators Full Access

Sandra J. DeBano, Samantha M. Roof, Mary M. Rowland and Lauren A. Smith
pg(s) 458–477

Abstract & References : Full Text : PDF (1537 KB)

The Role of Honey Bees as Pollinators in Natural Areas Full Access

Clare E. Aslan, Christina T. Liang, Ben Galindo, Hill Kimberly and Walter Topete
pg(s) 478–488

Abstract & References : Full Text : PDF (467 KB)

Food Chain Restoration for Pollinators: Regional Habitat Recovery Strategies Involving Protected Areas of the Southwest Full Access

Steve Buckley and Gary Paul Nabhan
pg(s) 489–497

Abstract & References : Full Text : PDF (732 KB)

Forbs: Foundation for Restoration of Monarch Butterflies, other Pollinators, and Greater Sage-Grouse in the Western United States Full Access

R. Kasten Dumroese, Tara Luna, Jeremiah R. Pinto and Thomas D. Landis
pg(s) 499–511

Abstract & References : Full Text : PDF (1716 KB)

Using Pollinator Seed Mixes in Landscape Restoration Boosts Bee Visitation and Reproduction in the Rare Local Endemic Santa Susana Tarweed,Deinandra minthornii Full Access

Mary B. Galea, Victoria Wojcik and Christopher Dunn
pg(s) 512–522

Abstract & References : Full Text : PDF (2880 KB)

Save Our Bats, Save Our Tequila: Industry and Science Join Forces to Help Bats and Agaves Full Access

Roberto-Emiliano Trejo-Salazar, Luis E. Eguiarte, David Suro-Piñera and Rodrigo A. Medellin
pg(s) 523–530

Abstract & References : Full Text : PDF (463 KB)

The Importance of Phenological Diversity in Seed Mixes for Pollinator Restoration Full Access

Kayri Havens and Pati Vitt
pg(s) 531–537

Abstract & References : Full Text : PDF (2208 KB) : Supplementary Materials

Stewardship in Action Full Access

Sarah Riehl
pg(s) 538–541

Citation : Full Text : PDF (595 KB)

Leave a comment

Filed under Bees, Biodiversity, Birds, Butterflies, Honey bees, Hoverflies, Mammals, Mutualism, Pollination, Wasps

Ivy pollinators citizen science project

Ivy bee 20161011_143817.png

Today, finally, after several years of hunting for them in Northamptonshire, I got to see some Ivy Bees (Colletes hederae) and managed to get a couple of decent photos.  The Ivy Bee is a recent natural colonist to the British Isles, having arrived here in 2001.  The Bees, Wasps and Ants Recording Society (BWARS) is running an Ivy Bee Mapping Project and you can find out more details by following that link.

The bees we saw today were a few minutes walk from the University and were (it’s galling to admit) discovered by Fergus Chadwick, a keen young ecologist who is working with me for a couple of months to gain some postgraduate research experience.

The main thing that Fergus is going to work on is a Pollinators of Ivy Monitoring Project.  Follow that link and it will give you details of how you can provide us with data to better understand the pollination ecology of one of our most ecologically valuable and under-rated plants.  Ivy (Hedera helix) is a hugely important nectar source to a wide range of over wintering bees, flies, beetles, hoverflies, wasps, and other insects.  Not only that but its berries are a vital food source for many fruit eating birds.  Any and all help in this project is very much appreciated!

10 Comments

Filed under Bees, Biodiversity, Birds, Butterflies, Honey bees, Hoverflies, Pollination, Wasps

Release today of the IPBES Summary for Policymakers of the Assessment Report on Pollinators, Pollination and Food Production

Inula at Ravensthorpe 20160710_145426Following on from the press release earlier this year announcing of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) assessment of pollinators, pollination and food production (which I reported on in February) it looks as though the full report may shortly be published.  A Summary for Policymakers has just been released by IPBES and can be downloaded by following this link.  I’ll put up a link to the full report once it becomes becomes available.

2 Comments

Filed under Bees, Biodiversity, Birds, Butterflies, Ecosystem services, Honey bees, Hoverflies, IPBES, Pollination, Wasps

Identifying British ichneumonid wasps: an introductory guide from the NHM

Tanzania ichneumonid P1000757

The ichneumonid wasps (Hymenoptera: Ichneumonidae) are a fantastically diverse group of insects that mostly share a similar parasitic life history: they lay their eggs in or on a host insect.  Around 24,000 species have been described, and estimates for their full diversity range between 60,000 and 100,000 species.

In Britain there are approximately 2,500 species, almost 10 times our bee diversity. Many species visit flowers, particularly umbellifers, and they can therefore be quite significant (though under-studied) pollinators of things like Wild Carrot (Daucus carota) and its relatives.

With so many species to deal with, identifying ichneumonids can be a daunting task. However the Natural History Museum (London) has produced a free beginner’s guide to identifying them – here’s a link to it.

Although it only covers 22 commonly encountered species (i.e. less than one hundredth of Britain’s species diversity) it’s nonetheless a useful introduction to a fascinating group. However you’ll not be able to identify the species pictured above – I photographed that in Tanzania a few years ago!

5 Comments

Filed under Biodiversity, Book review, Wasps

The influence of floral traits on specialization and modularity of plant–pollinator networks in a biodiversity hotspot in the Peruvian Andes – Watts et al. (2016)

Watts et al Figure 1

The second paper from the PhD thesis of my former student Dr Stella Watts has just been published in Annals of Botanyhere’s a link to the journal’s website.  It summarises the major findings from her field work on plant-pollinator interactions in the high Andes of Peru:

Watts, S., Dormann, C.F., Martín González, A.M. & Ollerton, J. (2016) The influence of floral traits on specialization and modularity of plant–pollinator networks in a biodiversity hotspot in the Peruvian Andes.  Annals of Botany doi: 10.1093/aob/mcw114

This paper represents a major piece of research, including extensive field data collection over multiple sites in a challenging environment at altitude; state-of-the-art data analysis; and then summarising all of this into a single, digestible paper, with some great figures.  I’m very proud to have been part of it!

Here’s the abstract; please email me or Stella if you’d like a copy of the full PDF:

Background and Aims:  Modularity is a ubiquitous and important structural property of ecological networks which describes the relative strengths of sets of interacting species and gives insights into the dynamics of ecological communities. However, this has rarely been studied in species-rich, tropical plant–pollinator networks. Working in a biodiversity hotspot in the Peruvian Andes we assessed the structure of quantitative plant–pollinator networks in nine valleys, quantifying modularity among networks, defining the topological roles of species and the influence of floral traits on specialization.

Methods: A total of 90 transects were surveyed for plants and pollinators at different altitudes and across different life zones. Quantitative modularity (QuanBiMo) was used to detect modularity and six indices were used to quantify specialization.

Key Results:  All networks were highly structured, moderately specialized and significantly modular regardless of size. The strongest hubs were Baccharis plants, Apis mellifera, Bombus funebris and Diptera spp., which were the most ubiquitous and abundant species with the longest phenologies. Species strength showed a strong association with the modular structure of plant–pollinator networks. Hubs and connectors were the most centralized participants in the networks and were ranked highest (high generalization) when quantifying specialization with most indices. However, complementary specialization d’ quantified hubs and connectors as moderately specialized. Specialization and topological roles of species were remarkably constant across some sites, but highly variable in others. Networks were dominated by ecologically and functionally generalist plant species with open access flowers which are closely related taxonomically with similar morphology and rewards. Plants associated with hummingbirds had the highest level of complementary specialization and exclusivity in modules (functional specialists) and the longest corollas.

Conclusions: We have demonstrated that the topology of networks in this tropical montane environment was non-random and highly organized. Our findings underline that specialization indices convey different concepts of specialization and hence quantify different aspects, and that measuring specialization requires careful consideration of what defines a specialist.

2 Comments

Filed under Bees, Biodiversity, Birds, Honey bees, Mutualism, Pollination, University of Northampton, Wasps