Category Archives: Pollination

Get a 30% discount if you pre-order my new book Pollinators & Pollination: Nature and Society

PollinatorsandPollination-frontcover

In the next few months my new book Pollinators & Pollination: Nature and Society will be published.  As you can imagine, I’m very excited! The book is currently available to pre-order: you can find full details here at the Pelagic Publishing website.  If you do pre-order it you can claim a 30% discount by using the pre-publication offer code POLLINATOR.

As with my blog, the book is aimed at a very broad audience including the interested public, gardeners, conservationists, and scientists working in the various sub-fields of pollinator and pollination research. The chapter titles are as follows:

Preface and Acknowledgements
1. The importance of pollinators and pollination
2. More than just bees: the diversity of pollinators
3. To be a flower
4. Fidelity and promiscuity in Darwin’s entangled bank
5. The evolution of pollination strategies
6. A matter of time: from daily cycles to climate change
7. Agricultural perspectives
8. Urban environments
9. The significance of gardens
10. Shifting fates of pollinators
11. New bees on the block
12. Managing, restoring and connecting habitats
13. The politics of pollination
14. Studying pollinators and pollination
References
Index

 

 

Leave a comment

Filed under Bees, Biodiversity, Biodiversity and culture, Birds, Butterflies, Climate change, Ecosystem services, Evolution, Flies, Gardens, History of science, Honey bees, Hoverflies, IPBES, Macroecology, Mammals, Moths, Mutualism, Neonicotinoids, Personal biodiversity, Pollination, Rewilding, Tenerife, Urban biodiversity

The evolution of insect pollination: a new essay just published

Science MagazineIn the latest issue of the journal Science you’ll find a commentary essay entitled: “The origins of flowering plants and pollinators“, written by Casper van der Kooi and myself.  It’s open access so do go and read it.

This commentary brings together some  recent findings in palaeontology, molecular phylogenetics, and pollinator sensory physiology and behaviour, to discuss the progress that’s been made in understanding the deep-time evolution of this most familiar and charismatic of ecological interactions.

The short version is that the old conceptual models are absolutely wrong.  Some version of “first came the gymnosperms and they were primitive and unsuccessful because they were wind pollinated.  Then, at the start of the Cretaceous, the angiosperms evolved and they were insect pollinated and advanced and so more successful” continues to appear in text books.  But we’ve known for a long time that many of the Jurassic gymnosperms were insect pollinated.  This may (or may not) predate insect pollination of angiosperms: there are huge disagreements between palaeobotanists and molecular phylogeneticists about when the first flowering plants evolved.  The graphic above comes from our essay and shows just how big the discrepancy is: molecular models suggest an origin for the angiosperms about 70 million years prior to the first confirmed fossils.  That’s about equivalent to the whole of the Jurassic period!  There are similar disagreements when it comes to the evolution of pollinating insects: for the Lepidoptera (butterflies and moths) the difference between the earlier molecular and later fossil evidence may be as much as 100 million years.

As we discuss, there are huge implications in these discrepancies for understanding not just how major elements within the Earth’s biodiversity evolved, but also for the origins of pollinator sensory physiology.  Insect behaviours linked to colour vision and odour reception may in turn influence effective crop and wild plant pollination.

The image accompanying our essay is by the very talented biologist, science communicator and graphic designer Elzemiek Zinkstok – follow that link and check out her work.

 

2 Comments

Filed under Biodiversity, Evolution, Pollination

Biodiversity, plant-pollinator interactions, and the UN’s Sustainable Development Goals

In the past couple of weeks I’ve delivered two presentations at virtual conferences. The first was at a Global Sustainability Summit run by Amity University, one of our partner institutions in India. The second was at the University of Northampton’s own internal research conference. Both of these focused on pollinators, as you might imagine, but they also referred to the United Nations’ Sustainable Development Goals (SDGs). The 17 SDGs are being increasingly used as a framework for promoting the importance of biodiversity to human societies across the globe, and I’m seeing them referred to more and more often in studies and reports about pollinator conservation. That’s great, and I’m all in favour of the SDGs being promoted in this way. However I wanted to highlight a couple of aspects of the SDGs that I think are missing from recent discussions.

The first is that pollinators, and their interactions with plants, are often seen as contributing mainly to those SDGs that are directly related to agriculture and biodiversity. Here’s an example. Last week the European Commission’s Science for Environment Policy released a “Future Brief” report entitled: “Pollinators: importance for nature and human well-being, drivers of decline and the need for monitoring“. It’s a really interesting summary of current threats to pollinator populations, how we can monitor them, and why it’s important. I recommend you follow that link and take a look. However, in the section about relevant, global-level policies, the report highlights “the UN Sustainable Development Goals (SDGs) – especially regarding food security (‘zero hunger’) and biodiversity (‘life on land’).

I think this is under-selling pollinators and pollination, and here’s why. First of all, as we pointed out in our 2011 paper “How many flowering plants are pollinated by animals?”, approaching 90% of terrestrial plants use insects and vertebrates as agents of their reproduction and hence their long-term survival. As we showed in that paper, and a follow up entitled “The macroecology of animal versus wind pollination: ecological factors are more important than historical climate stability“, the proportion of animal-pollinated plants in a community varies predictably with latitude, typically from 40 to 50 % in temperate areas up to 90 to 100% in tropical habitats. Now, flowering plants dominate most terrestrial habitats and form the basis of most terrestrial food chains. So the long-term viability and sustainability of much the Earth’s biodiversity can be linked back, directly or indirectly, to pollinators. That’s even true of coastal marine biomes, which receive a significant input of energy and nutrients from terrestrial habitats.

Biodiversity itself underpins, or directly or indirectly links to, most of the 17 SDGS; those that don’t have an obvious link have been faded out in this graphic:

The underpinning role of biodiversity, and in particular plant-pollinator interactions, on the SDGs needs to be stated more often and with greater emphasis than it is currently.

The second way in which I think that some writers and researchers in this area have misconstrued the SDGs is that they seem to think that it only applies to “developing” countries. But that’s certainly not the way that the UN intended them. ALL countries, everywhere, are (or should be) “developing” and trying to become more sustainable. To quote the UN’s SDG website:

“the 17 Sustainable Development Goals (SDGs)….are an urgent call for action by all countries – developed and developing – in a global partnership.”

and

“the SDGs are a call for action by all countries – poor, rich and middle-income – to promote prosperity while protecting the environment.”

I interpret this as meaning that “developed” countries need to consider their own future development, not that they only have to give a helping hand to “developing” countries (though that’s important too). Just to drive this home, here’s a recent case study by Elizabeth Nicholls, Dave Goulson and others that uses Brighton and Hove to show how small-scale urban food production can contribute to the SDGs. I like this because it goes beyond just considering the agricultural and food-related SDGs, and also because by any measure, Brighton and Hove is a fairly affluent part of England.

I’m going to be talking about all of this and discussing it with the audience during an online Cafe Scientifique on Thursday 25th June – details are here. I’m also going to be exploring more of these ideas in my forthcoming book Pollinators & Pollination: Nature and Society, which is due for publication later this year. The manuscript is submitted and is about to be copy-edited. The PowerPoint slide which heads this post uses a graphic from that book that sums up how I feel about biodiversity, plant-pollinator interactions, and the UN’s Sustainable Development Goals.

9 Comments

Filed under Biodiversity, Ecosystem services, IPBES, Pollination, University of Northampton, Urban biodiversity

One of the reasons why I don’t use reference management software….

….is that it creates nonsense like this! Now, I’m sure that spatial and temporal trends of global pollination have, indeed, benefited me – but that’s not the title of the paper! The actual title is “Spatial and Temporal Trends of Global Pollination Benefit” – full stop. I handled the paper when I was an editor at PLOS One and somehow my role has been bundled into the title by whatever reference management system the authors have used.

I won’t embarrass the authors by saying where it’s from, but it’s yet another example of something that I blogged about a few years ago – that reference management systems encourage sloppy referencing practices.

One thing that “Spatial and Temporal Trends of Global Pollination Benefit Jeff Ollerton” does get right, though, is subject-verb agreement – check out Steve Heard’s post over at Scientist Sees Squirrel on this very topic, and how a careful analysis of sentence structure can improve your writing.

5 Comments

Filed under Biodiversity, PLoS ONE, Pollination

For World Bee Day – an extract from my forthcoming book – UPDATED

Image

UPDATE: turns out the figure I cited for number of bee species is out of date so I’ve corrected it below. Thanks to John Ascher for pointing this out.

Publication of my book Pollinators & Pollination: Nature and Society by Pelagic Publishing has been pushed back until the end of this year or early in 2021. The current pandemic has created problems for the printing and distribution sectors, as it has for so many industries. Therefore, to celebrate World Bee Day, here’s a preview of the bee section from Chapter 2 which is entitled (ironically enough) “More than just bees – the diversity of pollinators”.

2.3 Bees, wasps and sawflies (Hymenoptera)

The bees and their relatives rank only third in terms of overall pollinator diversity.  Within this taxonomic Order, bees are not especially species rich (17,000 or so described species, perhaps 20,000 in total) – over 20,400 (see: https://www.catalogueoflife.org/col/details/database/id/67) compared with the other 50,000 social and solitary wasps, sawflies, and so forth. But what they lack in diversity the bees make up for in importance as pollinators of both wild and agricultural plants, and in their cultural significance.  The general notion of what a bee is, and how it behaves, looks to the honeybee (Apis mellifera) as a model: social, with a hierarchy, a queen, and a large nest (termed a hive for colonies in captivity).  In fact, this view of bee-ness, though long embedded within our psyche, is far removed from the biology of the average bee: most of them have no social structure at all, and a fair proportion of those are parasitic.  In Britain we have about 270 species of bees, give or take (Falk 2015) though there have been extinctions and additions to this fauna (see Chapters 10 and 11).  These species provide a reasonable sample of the different lifestyles adopted by bees globally.  They can be divided into four broad groups.

Honeybees include several highly social species and subspecies of Apis, of which the ubiquitous western honeybee (A. mellifera) is the most familiar.  Most colonies are found in managed hives, though persistent feral colonies can be found in hollow trees, wall cavities, and other suitable spaces.  They are widely introduced into parts of the world where they are not native (e.g. the Americas, Australia, New Zealand) and there is some debate as to whether they are truly native to Britain and northern Europe, with supporting evidence and arguments on both sides.  Colonies can be enormous and contain thousands of individuals, mostly female workers, with a single queen.  Unmated queens and males (drones) are produced by the colony later in the season.

Bumblebees (Bombus spp.) are typically also social, though their nests are much smaller (tens to hundreds of individuals).  Depending upon the species these nests can be in long grass, rodent holes, or cavities in buildings and trees.  Twenty-seven of the more than 250 species have been recorded in the UK, but six of these are not strictly social; they are parasitic and belong to the subgenus Psithyrus which will be described below.

The so-called solitary bees are by far the largest group in Britain (about 170 species) and worldwide (more than 90% of all species).  In the UK they belong to 15 genera, including Andrena, Anthophora, Osmia, Megachile, etc.  The females of most of these bees, once they have mated, construct nests that they alone provision with pollen for their developing young.  Nesting sites can be genus- or species-specific, and include soil, cavities in stone or wood, and snail shells.  Some species are not strictly solitary at all and may produce colonies with varying levels of social structure, though without a queen or a strict caste system; we term them “primitively eusocial”.  In fact sociality has evolved and been lost numerous times in the bees and in the rest of the Hymenoptera (Danforth 2002, Hughes et al. 2008, Danforth et al. 2019).  It’s also been lost in some groups that have reverted back to a solitary lifestyle, and even within a single genus it can vary; for example in the carpenter bee genus Ceratina (Apidae: Xylocopinae) tropical species are more often social than temperate species (Groom & Rehan 2018).

The final group is termed the cuckoo bees and, like their avian namesake, they parasitise the nests of both social and solitary bees (though never, interestingly, honeybees).  There are about 70 species in 7 genera, including the bumblebee subgenus, Psithyrus.  Other genera include Melecta, Nomada and Sphecodes.  In some cases the parasitic species are closely related evolutionarily to their hosts and may resemble them, for example some Psithyrus species.  In other cases they may be only distantly related and in fact look more like wasps, e.g. Nomada species.  Some genera of cuckoo bees are restricted to parasitising only a single genus of bees, others are parasites of a range of genera (Figure 2.4).

Although we often think of bees, overall, as being the most important pollinators, in fact species vary hugely in their importance.  Pollinating ability depends upon factors such as abundance, hairiness, behaviour, body size, and visitation rate to flowers (Figure 2.1).  Size is especially important for three reasons.  First of all, larger animals can pick up more pollen on their bodies, all other things being equal.  Secondly, in order to bridge the gap between picking up pollen and depositing it, flower visitors must be at least as large as the distance between anthers and stigma, unless they visit the stigma for other reasons.  Finally, larger bee species tend to forage over longer distances on average (Greenleaf et al. 2007) thus increasing the movement of pollen between plants.  However, most of the world’s bees are relatively small as we can see from the analysis of British bees in Figure 2.5.  Many species have a maximum forewing length of only 4 or 5 mm, and the majority of species are smaller than honeybees.  Remember also that these are maximum sizes measured from a sample; individual bees can vary a lot within populations and even (in the case of Bombus spp.) within nests (Goulson et al. 2002).  So the assumption that all bees are good pollinators needs to be tempered by an acknowledgement that some are much better than others.    


Figure 2.5: The sizes of British bees. Forewing length is a good measure of overall body size and the data are maximum lengths recorded for species, except for the social bumblebees and honeybee I have used maximum size of workers (queens are often much larger). The blue line indicates the honeybee (Apis mellifera). The biggest bee in this data set is the Violet Carpenter Bee (Xylocopa violacea) which, whilst not generally considered a native species (yet), has bred in Britain in the past. Data taken from Falk (2015).

Leave a comment

Filed under Bees, Biodiversity, Ecosystem services, Honey bees, Pollination, Wasps

Garden plant-pollinator surveys: progress so far

The network of pollination ecologists and insect specialists who have confirmed that they are surveying plant-pollinator networks in their gardens now stands at 50. As the map above shows, most are in the UK, Ireland and mainland Europe, but the Americas are also becoming well represented, we have a couple of people surveying in North Africa, and three in Australia. An x-y plot of the coordinates of the gardens shows the spread a little better:

Some people have started to send me data already, which is great; if you’re surveying and haven’t let me know your latitude and longitude, please do so, preferably decimalised – you can convert degrees/minutes/seconds to decimal here: https://www.latlong.net/degrees-minutes-seconds-to-decimal-degrees

I’ve managed 13 formal 15 minute surveys so far, plus have a few ad hoc observations that I am keeping separate, and I will be continuing my data collection for the foreseeable future. I’ve started playing with the data as you can see below. This is a plot made using the bipartite package in R, with plants to the left and pollinators to the right. The size of the bars is proportional to the number of pollinators/plants a taxon connects to. In the plants you can immediately see the dominance of apple (Malus domestica) and greengage (Prunus domestica), which attract a wide variety of insects to their flowers. Of the pollinators, the hairy-footed flower bee (Anthophora plumipes) and dark-edged beefly (Bombylius major) are especially common and generalist in their flower visits. It will be really interesting to see how this changes over the season, and how our fruit and vegetables are connected into the wider network via pollinators that they share with the ornamental and native plants.

If you are experienced at surveying pollinators and want to get involved, follow that first link and check out the protocol and FAQs, and please do email me: jeff.ollerton [at] northampton.ac.uk

3 Comments

Filed under Bees, Biodiversity, Butterflies, Ecosystem services, Flies, Gardens, Honey bees, Hoverflies, Pollination, Urban biodiversity

The other pollinators: some recent videos that don’t focus on bees

The review of the biodiversity of pollinators that I published in 2017 estimated that on average about 18% of animal-pollinated plants within natural communities are specialised on bees. Bees also contribute to the reproduction of many of the plants that have generalist pollination systems, which account for perhaps 50% of plant species on average. But that stills leaves a significant fraction (maybe one third) that are specialised on the “other” pollinators, including flies, beetles, birds, bats, and so forth. There is growing awareness of how important these pollinators are for wild plant and crop pollination, but bees still hog most of the pollinator-related media.

In the last couple of weeks I’ve been sent links to videos that focus on these other pollinators so I thought I’d compile a list that show us something of the true diversity of animals that act as pollen vectors. Please add your own suggestions in the comments:

Elephant shrews, lizards, cockroaches*, crustaceans, and biting midges are covered in this SciShow video (HT Steve Hawkins)

Opossum pollination of a Brazilian plant is featured in this video (HT Felipe Amorim)

Here’s a recorded webinar on bird pollination by Dan Scheiman from Audubon Arkansas

A few videos on bat pollination by Jim Wolfe can be found here and here and here, and this is a short one that’s a supplement to a recent Journal of Applied Ecology paper on cactus pollination by Constance J. Tremlett et al.

The fascinating ecology of skunk cabbage (Symplocarpus foetidus), including fly and possibly beetle pollination, is the topic of this video.

Fly pollination is also highlighted in this short piece by the Natural History Museum, and this one deals with drone flies as managed pollinators for agriculture in New Zealand.

Enjoy!

*Watch out for my report on a newly discovered cockroach-pollinated plant….hopefully coming later this year…..

5 Comments

Filed under Biodiversity, Birds, Brazil, Flies, Hoverflies, Mammals, Mutualism, Pollination

Pollination ecologists in gardens: protocol and links to other initiatives – UPDATE NUMBER 2

Andrena bicolor

UPDATE: Following conversations with a couple of the participants of the garden surveys, we’ve changed the protocol slightly to make Survey type A more quantitative and to take into account when we get large numbers of individuals all visiting the same plant at the same time – it’s crazy to have a single line for each individual.  Details are in the new spreadsheet which you can down load from here: Ollerton garden surveys 2020

The additions should be self explanatory.  If you are not able to go back to retro-fit the additional data, that’s fine, just use the new spreadsheet format for future surveys: all data are going to be useful!

In the present format the data will be useful for modelling using GLMMs etc., in order to test predictions about which plants, and in which contexts, support the most pollinators.  The data format will need tweaking slightly to make it analysable in bipartite, but that should be fairly straightforward.

If you are taking part in the surveys it would be really useful if you could email me your latitude and longitude as I’d like to start creating a map of where the surveys are happening.

Any questions, send me an email or ask in the comments.


 

Following up from my last post about ecologists using their gardens to collect standardised data, I’ve had a huge response from pollination ecologists all over the world wanting to get involved.  So to streamline the process I thought that I would put the protocol and updates on my blog.  Just to reiterate, this is really is designed for those who already have some experience of surveying pollinators and flowers.  I didn’t intend this to be a citizen science project, there are plenty of those around at the moment for inexperienced people who want to contribute, for example:

The Pollinator Monitoring Scheme’s  FIT (Flower-Insect Timed) counts: https://www.ceh.ac.uk/our-science/projects/pollinator-monitoring

Kit Prendergast’s “bee hotels” survey: https://www.facebook.com/groups/Beesintheburbs/announcements

If anyone wants me to publicise others, let me have the link in the comments below or send me an email.

OK, for those ecologists wanting to survey pollinators and the flowers they are visiting (or not visiting) in their gardens, here’s the protocol:

  1.  There are two types of survey – please do both if possible, it would be good to compare the results from the two approaches; otherwise choose the easiest one for you.
  2. Type A surveys involve regular walks at a steady pace around the garden, recording what insects and other flower visitors are active on particular flowers (and noting the ones they are not visiting).  Make your walks a standard time, proportional to the size of the garden. For example, in our 10m x 20m garden I am doing 15 minute walks, which involves walking the same route one way, then back, pausing to record data.
  3. Type B surveys involve 10 minute focused observations of a patch of flowers of one species, no larger than 0.5m x 0.5m, recording the number of flowers each pollinator visits.
  4. In both cases, identify the flower visitor to the taxonomic level to which you feel confident, e.g. it’s better to use Andrena sp. 1 or Calliphoridae sp. 2 or Diptera sp. 3 rather than guessing.
  5. Record all data plus metadata about your garden on this spreadsheet which has examples of data that I have collected so far.  When you return it, please change “Ollerton” to your own surname : Ollerton garden surveys 2020
  6. Please don’t modify the format of the survey sheets, it will make life very difficult when we collate the data.
  7. Collect data from now until the end of April.  By then we will know whether to continue further data collection.
  8. At the end of the month, send your spreadsheets to me: jeff.ollerton [at] northampton.ac.uk  I will acknowledge receipt of each one, so if you don’t get an acknowledgement it may be that our spam filter has rejected your email, in which case message me on Twitter or comment below.
  9. Finally – please respect local/national restrictions on movements and social isolation: safe safe and keep your community safe.

 

Here are some Frequently Asked Questions – I will update FAQs as they come in:

Q: What’s going to happen to all of the data?

I think that’s for the pollinator research community to decide.  My feeling at the moment is that in the first instance there should be a data paper that summarises the results and makes the data freely available to everyone.  That would include all data contributors as co-authors, probably under a project name rather than individually.  After that it’s up to individuals and groups to work with the data to address their own research questions.  I know that in the UK there are several PhD researchers who are worried about not being able to collect data this year and who want to contribute to this initiative and use it in their theses.  I’m sure that there are others elsewhere.  As a community it would be great to support these young researchers.

Q: I am not based in the UK, can I still take part?

A: Yes, of course, though check in your local networks to see if anyone is coordinating local efforts.

Q: How do I calculate “Total floral cover” for survey Type B?

A: The idea is to estimate the area covered by all of the patches of the plant in flower across the whole garden, and then add it up to get a total area covered. It is always going to be a rough estimate, but it at least gives us a sense of how abundant the flowers are in your garden.

Q: How do I classify “floral units” for survey Type B?

A: Use the UK POMS approach:

POMS flower heads

Q:  Should I collect weather data?

A: You can certainly add data to another sheet on the spreadsheet if you want to, but the plan is to use data from local weather stations to capture standardised weather information.

Q: Should I collect nectar and/or pollen and/or pollinator behaviour data?

A: Again, collect any data that you have the time and equipment for and add it to a different sheet

Q: My garden has very few flowers and pollinators – can I still take part?

A: Yes, absolutely, we need a range of garden types, from the very large and florally diverse to small window boxes or lawns with just daisies and dandelions..

Q: How long should I survey for, and how many surveys should I do.

A: Try to aim for what you think is a representative assessment of the plant-flower visitor network in your garden.  The idea is that people do as many surveys as they can, as often as they can, given their personal time constraints. I don’t want to dictate to people how to use their time, this needs to be enjoyable as well as useful. As long as we know the sampling effort and floral diversity within the gardens, we should be able to take account of sampling effort in any analyses.

3 Comments

Filed under Bees, Biodiversity, Butterflies, Gardens, Honey bees, Hoverflies, Moths, Pollination, Urban biodiversity

Ecologists with gardens: in the current crisis, coordinate your networks to collect standardised data!

20200327_085658

In the current lockdown period of the COVID-19 pandemic, a lot of ecologists are stuck at home: universities and research institutes are closed and it’s not possible to get out and do field work.  Staring out of the window into our garden the other day I had a bright idea and I sent out this email to my network of colleagues in the UK who work on pollinator ecology:

Hi everyone,

I hope you’re all keeping well and safe during this difficult time. Given that we’re all supposed to be socially isolating as much as possible I wondered if we could use the time to generate some interesting data and keep ourselves sane in the process. The idea I had was for as many UK & Irish pollination ecologists as possible to carry out standardised garden surveys of insect-flower visitor interactions over the coming weeks. Combined with information about location, size of garden, floral diversity, etc. etc., it could give us some useful information about early spring plant-visitor garden networks along latitudinal and longitudinal gradients.

For those with kids at home it might be a good way of getting them out into fresh air and giving them something to do.
The response has been phenomenal and a lot of colleagues have agreed to take part.  We’ve worked out a protocol and we are starting to collect data.  If anyone (in the UK or elsewhere in the world) with the requisite pollinator and plant identification skills and experience wants to get involved, please send me an email: jeff.ollerton [at] northampton.ac.uk

Of course others who are less experienced can still help out by taking part in the Pollinator Monitoring Scheme’s  FIT (Flower-Insect Timed) counts: https://www.ceh.ac.uk/our-science/projects/pollinator-monitoring

However, it also struck me that there are plenty of other ecologists who could use their gardens, and networks of colleagues, to collect a large amount of useful data, in a standard way, across a wide geographical area, e.g. plant-herbivore interactions, bird behaviour, earthworm counts, etc. etc.

Let’s get away from our computers and into the fresh air and start generating results!

3 Comments

Filed under Biodiversity, Pollination, Urban biodiversity

Landscapes for pollinators: please take the survey!

BB on margin

One of the research projects and collaborations that I’m involved with is a BBSRC-funded project entitled “Modelling landscapes for resilient pollination services in the UK” with colleagues from the University of Reading, the University of Huddersfield, and the Natural Capital Solutions consultancy.  As part of that project we are surveying opinions on what people in the UK value as landscapes and how these landscapes contribute to supporting biodiversity.

If you are based in the UK and are interested in taking part in this short survey, please read the following text and click on the link to take the survey: 

Bees and other insect pollinators are major contributors to UK agriculture. Despite their importance for crop production, pollinator populations are threatened by many modern land management and agricultural practices. This raises questions about how secure this service may be to future changes: will we have enough pollinators where we need them? Will populations be able to withstand changes to the way we manage land? What might be the costs to us, both financially and socially, if we get it wrong?

Our research aims to address this knowledge gap. Our team of ecologist, economists and social scientists are working together to model the ecological, economic and ‘human’ costs of different land management methods.

As part of this we have designed a short online survey to capture the ways that people value and use the countryside, what features they prefer and why.

The survey takes less than 10 minutes and asks you to rate a series of images and say what you think about the landscapes that are illustrated.  It can be found here:

http://hud.ac/landscapes

For more information about the project visit:

http://www.reading.ac.uk/caer/RP/RP_index.html

2 Comments

Filed under Bees, Biodiversity, Biodiversity and culture, Butterflies, Ecosystem services, Hoverflies, Pollination