Category Archives: Evolution

Pollinator availability, mating system and variation in flower morphology in a tropical savanna tree – a new, open-access study

Curatella image by Pedro Lorenzo

Widespread plant species can encounter a variety of different pollinators across their distributional range.  This in turn can result in local adaptation of flowers to particular pollinators, or to an absence of pollinators that results in adaptations for more self pollination.   A newly published study by one of my former PhD students, André Rodrigo Rech in Brazil, has looked at this in the widespread South American savanna tree Curatella americana.  André studied 10 populations separated in space by thousands of kilometres, in cerrado vegetation, one of the most threatened habitat types in Brazil.  Here’s the abstract:

Widely distributed organisms face different ecological scenarios throughout their range, which can potentially lead to micro-evolutionary differentiation at specific localities. Mating systems of animal pollinated plants are supposed to evolve in response to the availability of local pollinators, with consequent changes in flower morphology. We tested the relationship among pollination , mating system, and flower morphology over a large spatial scale in Brazilian savannas using the tree Curatella americana (Dilleniaceae). We compared fruit set with and without pollinators in the field, and analyzed pollen tube growth from self- and cross-pollinated flowers in different populations. Populations with higher natural fruit set also had lower fruit set in bagged flowers, suggesting stronger barriers to self-fertilization. Furthermore, higher levels of autogamy in field experiments were associated with more pollen tubes reaching ovules in self-pollinated flowers. Morphometric studies of floral and leaf traits indicate closer-set reproductive organs, larger stigmas and smaller anthers in populations with more autogamy. We show that the spatial variation in mating system, flower morphology and pollination previously described for herbs also applies to long-lived, perennial tropical trees, thus reemphasizing that mating systems are a population-based attribute that vary according to the ecological scenario where the plants occur

Here’s the full citation with a link to the paper which is open access:

Rech, A.R., Ré Jorge, L., Ollerton, J. & Sazima, M. (2018) Pollinator availability, mating system and variation in flower morphology in a tropical savannah tree. Acta Botanica Brasilica (in press)

The illustration of Curatella americana  and its pollinators is by Pedro Lorenzo.

This paper is a contribution to a special issue of Acta Botanica Brasilica dedicated to floral biology and pollination biology in Brazil It’s all open access and if you follow that link you can download the papers.


Leave a comment

Filed under Bees, Biodiversity, Biogeography, Brazil, Evolution, Pollination

The evolution of pollination systems in one of the largest plant families: a new study just published – download it for free

Figure 1 JUNE revision

Interactions between flowering plants and the animals that pollinate them are known to be responsible for part of the tremendous diversity of the angiosperms, currently thought to number at least 350,000 species.  But the diversity of different types of pollination system (bird, bee, moth, fly, etc.) is unknown for most large, related groups of plants (what systematists term “clades”) such as families and subfamilies.  In addition we know little about how these interactions with pollinators have evolved over time and in different parts of the world.  Only a handful of groups of flowering plants have been studied with respect to questions such as:

How much do we currently know about the diversity of pollination systems in large clades?

How is that diversity partitioned between the smaller clades (e.g. subfamilies, tribes, genera) of a family, and what are the evolutionary transitions between the major groups of pollinators?

Do these pollination systems vary biogeographically across the clade’s range?

These sorts of questions have been addressed for the massive, globally distributed Apocynaceae (one of the top 10 or 11 largest angiosperm families with more than 5,300 species) in a study just published using a new database of pollinators of the family.  What’s more, the work is open access and anyone can download a copy for free.  Here’s the citation with a link to the paper:

Ollerton, J., Liede-Schumann, S., Endress, M E., Meve, U. et al. [75 authors in all] (2018) The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study. Annals of Botany (in press)

In this study we have shown that (among other things):

  • The family is characterised by an enormous diversity of pollination systems involving almost all of the major pollen vectors and some that are nearly unique to the Apocynaceae.
  • Earlier diverging clades have a narrower range of pollination systems than those that evolved later.
  • Transitions from one type of pollination system to another are evolutionarily constrained, and rarely or never occur, whereas others have taken place much more often, e.g. between wasp and beetle pollination.
  • There is significant convergent evolution of pollination systems, especially fly and moth pollination, by geographically and phylogenetically distinct clades.

You’ll notice that there are 75 (!) authors on this paper.  That’s because we’ve pulled together a huge amount of previously unpublished data and used some state of the art analyses to produce this work.  It was a monumental effort, especially considering that my colleague Sigrid Liede-Schumann and I only decided to push ahead with this project about a year ago when we chatted at the International Botanical Congress that I posted about at the timeIn truth however the origins of this paper go back over 20 years to 1997 when when Sigrid and I published a study of what was then known about pollination systems in the Asclepiadaceae (the asclepiads).

In that paper we said that the research “is intended to be ongoing…[we]…hope to re-review asclepiad pollination within the next decade”.  At the time I didn’t think it would actually take more than 20 years!  However over that period a lot has changed.  For one thing the Asclepiadaceae no longer exists, broken up and subsumed within a much larger Apocynaceae.  Also, I’ve done a lot of work in the field and in the herbarium on some of the smaller groups within the family, such as CeropegiaOthers, including many of my co-authors, have also been working on different groups in various parts of the world.  Finally the level of sophistication of the analyses we are now able to do has increased beyond recognition compared to what we could achieve in the mid-1990s.  All of this means that now is the right time to produce this study.

Having said all of that, this is still a work in progress.  Our Pollinators of Apocynaceae Database contains a sample of just over 10% of the species in the family.  So lots more data on plant-pollinator interactions needs to be collected before we say we fully understand how pollination systems have evolved in this most remarkable family.  I’d be happy to talk with anyone who is interested in the family and being involved in future data collection.

The database will be freely available to anyone who wants to use it – lots more can be done with this information and, once again, I’m happy to chat with potential collaborators.

I was recently interviewed about the study, and about plant-pollinator interactions and the Apocynaceae more generally, for the In Defense of Plants podcast – here’s a link to that interview.

Finally, I’d like to express my sincerest thanks to my co-authors on this study – I really couldn’t have done it without you guys!


Filed under Apocynaceae, Biodiversity, Biogeography, Evolution, Pollination, Wasps

The explosion in orchids as houseplants: what does it tell us about how flowers evolve?

Orchids 20180512_112533.jpg

One of the major trends in horticulture over the last 20 years or so has been the rise in popularity of orchids as house plants.  Orchids used to have a reputation as being delicate, choosy, costly things that needed expensive glasshouses, heating, and humidity systems to grow.  Some groups of orchids are certainly like that, but many are not (Orchidaceae is one of the two largest families of plants, after all).  These days it’s impossible to walk into any supermarket or department store and not see orchids for sale at a reasonable price, orchids that are tough and can withstand the relatively dry, centrally heated houses in which most of us in Britain live. 

The majority of these orchids are varieties of Phalaenopsis, the moth orchids.  Intensive hybridisation by commercial growers has meant that there is an almost inexhaustible range of flower colours, shapes, sizes and patterning available.  Take a look at this gallery of images and you’ll see what I mean, or go into a shop that sells such orchids and observe that almost no two are alike.

This is the stuff of natural selection: genetic variation in the phenotype that can be acted upon by a selective agent.  In this case it’s the growers of orchids who choose the most attractive types to sell and discard the others.  If this variation emerged in wild populations most of it would disappear over time, but some, just occasionally, would be selected for by a different group of pollinators and go on to form a new species.  This is much more likely to happen if the individuals with this variation are isolated from the rest of the population in time or space, for example if they flower later or have been dispersed to a distant valley or mountaintop (termed allopatric speciation).  But it can also happen within populations – sympatric speciation.

Back in 1996, near the start of this orchid explosion, one of my earliest papers was a speculative commentary in Journal of Ecology called “Reconciling ecological processes with phylogenetic patterns: the apparent paradox of plant-pollinator systems”.  It generated some interest in the field at the time and has picked up >250 citations over the years, mostly other researchers using it as supporting evidence for the discrepancies we see when trying to understand how flowers evolve within a milieu of lots of different types of potential pollinators selecting for possibly diverse and contradictory aspects of floral form.  In that paper I made a passing comment that I expected the reviewers to criticise, which they did not.  Once it was published I thought that perhaps other researchers in the field would critique it or use it as a jumping off point for further study, which has not really happened either.  This is what I wrote:

         “It appears that pollination systems are labile and may evolve quite rapidly….plant breeders can obtain a fantastic range of horticultural novelties through selective breeding over just a few generations.”

This is horticulture holding up a mirror to the natural world and saying: “This is how we do it in the glasshouse, look at the variety we can produce over a short space of time by selecting for flower forms; can nature do it as quickly, and if so what are the mechanisms?”  

I still believe that pollination ecologists could learn a lot from horticulture and there’s some fruitful (flowerful?) lines of enquiry that could be pursued by creative PhD students or postdocs.  Here’s one suggestion: part of the reason why these Phalaenopsis orchids are so popular as house plants is that they have very long individual flower life times, often many weeks.  Now we suspect that floral longevity is under strong selection; see for example research by Tia-Lynn Ashman and Daniel Schoen in the 1990s.  This showed that there is a negative correlation between rate of pollinator visitation and how long flowers stay open.  Plants with flowers that are not visited very frequently stay open much longer, for example the bird-pollinated flowers of the Canary Islands that may only be visited once or twice a day, and which can remain open for more than 20 days.  Is the floral longevity shown by these orchids (or other groups of plants that have been horticulturally selected) beyond the range found in natural populations?  If so, what are the underlying physiological mechanisms that allow such extreme longevity?  If not, does this mean that there is an upper limit to the lifespan of flowers, and if so, why?  

In the mean time I’m going to enjoy the orchids above that sit on our kitchen windowsill.  They actually belong to my wife Karin who has developed something of an interest in them in recent months.  The big spotty one is a late birthday gift for her that I picked up this morning from a local flower shop, and which stimulated this post as I was walking home.  I’d bet that we never see another one like it!


Filed under Biodiversity, Biodiversity and culture, Birds, British Ecological Society, Evolution, Gardens, Personal biodiversity, Pollination

Pollinators, flowers, natural selection and speciation: a virtual conference

Ashy Mining Bee 2017-06-17 10.55.45

It’s been a couple of years since I posted my previous “virtual conferences” on Pollinators, Pollination and Flowers and Ecology and Climate Change, a lapse that has largely been due to lack of time (my default excuse for most things these days….).  However Judith Trunschke at Uppsala University in Sweden has risen to the challenge of guest-curating her own virtual conference*.  The theme here is how pollinators impose (or sometimes don’t impose) natural selection on flowers that results in the formation of new plant species:

Timo van der Niet (IIASA 2010): Plant-diversification through pollinator shifts

Timo van der Niet (Congresos UCA 2014): Disentangling the contribution of pollinators in shaping angiosperm orchid genus Satyrium

Anne Royer (Evolution 2016): Plant-pollinator association doesn’t explain disruptive selection & reproductive isolation

Brandon Campitelli (Evolution 2016): Pollinator-mediated selection and quantitative genetics

Yuval Sapir (Evolution 2016): Rethinking flower evolution in irises: are pollinators the agents of selection?

Ruth Rivken (Evolution 2014): The mechanisms of frequency-dependent selection in gynodiocious Lobelia siphilitica

Gonzalo Bilbao (Botany 2017): Pollinator-mediated convergent shape evolution in tropical legumes

My grateful thanks to Judith for curating this great set of talks; if anyone else would like to do the same, please get in touch.

Feel free to discuss the talks in the comments section and to post links to other talks on the same topic.


*I’m assuming that, as all of these videos are in the public domain, none of the presenters or copyright owners objects to them being presented here.  If you do, please get in touch and I’ll remove it.

Leave a comment

Filed under Bees, Biodiversity, Birds, Butterflies, Evolution, Honey bees, Hoverflies, Mutualism, Pollination, Wasps

Pollinator biodiversity and why it’s important: a new review just published – download it for free


In a new review paper that’s just been published in the Annual Review of Ecology, Evolution and Systematics I have looked at the question of just how diverse the pollinators are, and why pollinator biodiversity is ecologically important and therefore worthy of conservation.  I’ve taken a deep time and wide space approach to this, starting with what the fossil record tells us about when animal pollination evolved and the types of organisms that acted as pollinators in the past (the answer may surprise you if you’re unfamiliar with the recent paleontological literature on this topic).  Some of the most prominent biogeographical patterns have been highlighted, and I have tried to estimate the global diversity of currently known pollinators.  A conclusion is that as many as 1 in 10 described animal species may act as pollen vectors.

As well as this descriptive part of the review I’ve summarised some recent literature on why pollinator diversity matters, and how losing that diversity can affect fruit and seed set in natural and agricultural contexts.  Extinction of pollinator species locally, regionally, and globally should concern us all.

Although I was initially a little worried that the review was too broad and unfocused, having re-read it I’m pleased that I decided to approach the topic in this way.  The research literature, public policy, and conservation efforts are currently moving at such a fast pace that I think it’s a good time to pause and look at the bigger picture of what “Saving the Pollinators” actually means and why it’s so important.  I hope you agree and I’d be happy to receive feedback.

You can download a PDF of the review entitled Pollinator Diversity: Distribution, Ecological Function, and Conservation by following that link.

Pollination ecologists should also note that in this same volume of Annual Review of Ecology, Evolution and Systematics there’s a review by Spencer Barrett and Lawrence Harder called The Ecology of Mating and Its Evolutionary Consequences in Seed Plants.  If you contact those authors I’m sure they’d let you have a copy.


Filed under Apocynaceae, Bees, Biodiversity, Biogeography, Birds, Butterflies, Climate change, Ecosystem services, Evolution, Honey bees, Hoverflies, IPBES, Macroecology, Mammals, Moths, Mutualism, Neonicotinoids, Pollination, Urban biodiversity, Wasps

A fossilised flower in amber – with its pollinator!

Screen Shot 2017-04-13 at 17.13.41

There have been only a handful of occasions in my professional life when I’ve been sent a manuscript to review that has caused my jaw to hit the floor with amazement.  The last time it occurred was July 2016 when I received a request to review a study that claimed to have found a fossil flower in amber, with an associated pollinator.  Not only that, but the flower appeared to belong to a species of asclepiad (Apocynaceae subfamily Asclepiadoideae) – the plant group on which I have focused a good deal of my attention over the years.  Even better, the study was by George Poinar, the originator of the idea to extract DNA from amber-encased fossils, thus inspiring Jurassic Park.  George is also the author of two books (Life in Amber and Quest for Life in Amber) that made a big impression on me when I was a PhD student and young post-doc*.

An asclepiad in amber?  From George Poinar?  How could I possibly refuse?!

One of the almost unique features of the asclepiads is that they disperse their pollen as discrete packages – pollinia – that attach en masse to their pollinators.  Only the unrelated orchids do anything similar, which means that identifying the pollinators of asclepiads is much more straightforward than for most plants, making them an ideal model group for studying plant-pollinator interactions.  I’ve had a deep interest in the asclepiads, and particularly their pollination ecology, for over 30 years. Over that time I’ve occasionally daydreamed that perhaps a fossil asclepiad flower in amber might be discovered in my lifetime, or an insect with a pollinarium attached, but I was amazed to see that this study had discovered both in the same piece of amber.  In the image at the top of this post, L and C point to some significant features of the flower, whilst T marks the pollinator.  And T stands for….

….a termite!  Termites are rare overall as pollinators and unknown in that role in relation to the asclepiads; P in this image points to the pollinia attached to the front of the head of the termite:

Poinar_FossilMilkweed_separate pollinia on head

You can get a better sense of the relationship between the flower and the pollinator from the photograph at the end of the this post.

After reading and re-reading and re-re-reading the manuscript I came to the conclusion that assigning the flower to a living group of asclepiads was problematical.  So (with the Editor’s permission) I solicited the views of a few colleagues with more experience than I of some of the less well-known groups of asclepiads, and related Apocynaceae s.s., the morphology of which may shed light on this intriguing fossil.  Without going into the technical details (which I’m happy to discuss with anyone who is interested) we concluded that the flower may well represent a transitional taxon as it has features of a number of different extant asclepiad lineages.  This amber, from the Dominican Republic, is estimated to be between 15 and 45 million years old, so it’s perhaps not unexpected that the set of floral features in this flower appear rather odd from a modern perspective: plants, and their flowers, evolve, just like all other organisms.

George has assigned the flower to a new genus and called it Discoflorus neotropicus  – the “different flower from the Neotropics”.  Millions of years ago this flower bloomed in the tropical forest that covered that part of the world, and attracted a worker termite to feed on its sweet nectar, pollinating the flower in the process.  Before that could take place both flower and pollinator found themselves entombed in the sticky sap being exuded by a leguminous tree called Hymenaea protera.  Many asclepiads are climbers so it’s quite possible that Discoflorus neotropicus was climbing through the branches of that tree when it got stuck.  A fateful day for flower and insect that has come down to the present day as an all-too-rare insight into ancient plant-pollinator interactions: the first fossil asclepiad flower and the first fossil asclepiad pollinator.

The study is published as follows, with a link to the journal:

Poinar Jr, G.O. (2017) Ancient termite pollinator of milkweed flowers in Dominican amber.  American Entomologist 63: 52-56

My sincere thanks to George for allowing me to highlight his research, and use his images, on my blog.  All images are (c) George O. Poinar Jr.


*I have a life-long interest in palaeontology that goes back to my youth, collecting fossils on the shale heaps produced from coal mining in the north of England (heaps, incidentally, that my father, grandfather, and paternal uncles had helped to create – all were coal miners in the area).  I very nearly became a professional palaeontologist but the lure of living ecosystems overcame my interest in those that are dead, though my fascination with fossils continues, particularly those in amber and (as I’ve related previously) human ancestors.

Screen Shot 2017-04-13 at 17.25.48


Filed under Biodiversity, Evolution

Generalist pollination can evolve from more specialised interactions: a new study just published

2013-11-24 15.44.01

There’s a long-standing idea in biology that ecological specialisation is an evolutionary “dead end” from which species can never emerge.  In other words, if a species becomes so adapted to a particular ecological strategy (could be feeding or habitat requirements or how it interacts with other species ) then no amount of natural selection will result in its descendants evolving different strategies, thereby diversifying into new species.  In particular it’s traditionally thought that evolving broader, “generalist” strategies from narrower, “specialised” ones is highly unlikely.

This has been much discussed in the literature on the ecology and evolution of pollination systems, where traditionally this “dead end” scenario has been accepted.  However a small number of case studies have shown that generalised pollination systems can evolve within much more specialised clades, beginning with Scott Armbruster and Bruce Baldwin’s study of Madagascan Dalechampia (Euphorbiaceae), published in Nature in 1998.

To this limited body of examples we can now add another case study: in the genus Miconia (Melastomataceae), generalist nectar/pollen rewarding strategies can evolve within a clade of plants that predominantly uses a more specialised, buzz-pollinated strategy involving just bees.

The work is part of the PhD research of Vinicius de Brito who is one of the researchers I was privileged to do some field work with in Brazil when I was there in 2013 – see my post: “It’s called rainforest for a reason, right?  Brazil Diary 6“.  Vini is the guy on the left of the photo accompanying this post.  Here’s the citation and a link:

de Brito, V.L.G., Rech, A.R., Ollerton, J., Sazima, M. (2017) Nectar production, reproductive success and the evolution of generalised pollination within a specialised pollen-rewarding plant family: a case study using Miconia theizans. Plant Systematics and Evolution doi:10.1007/s00606-017-1405-z 

Here’s the abstract:

Generalist plant–pollinator interactions are prevalent in nature. Here, we untangle the role of nectar production in the visitation and pollen release/deposition in Miconia theizans, a nectar-rewarding plant within the specialised pollen-rewarding plant family Melastomataceae. We described the visitation rate, nectar dynamics and pollen release from the poricidal anthers and deposition onto stigmas during flower anthesis. Afterwards, we used a linear mixed model selection approach to understand the relationship between pollen and nectar availability and insect visitation rate and the relationship between visitation rate and reproductive success. Miconia theizans was visited by 86 insect species, including buzzing and non-buzzing bees, wasps, flies, hoverflies, ants, beetles, hemipterans, cockroaches and butterflies. The nectar produced explained the visitation rate, and the pollen release from the anthers was best explained by the visitation rate of pollinivorous species. However, the visitation rates could not predict pollen deposition onto stigmas. Nectar production may explain the high insect diversity and led to an increase in reproductive success, even with unpredictable pollen deposition, indicating the adaptive value of a generalised pollination system.

As always, I’m happy to send a PDF to anyone who wants a copy, just drop me an email.


Filed under Bees, Biodiversity, Brazil, Butterflies, Evolution, Hoverflies, Mutualism, Pollination, Wasps

The bee that lives on a volcano!

Nature can adapt to even the most unpromising and uncompromising of physical environments, from deep oceans to arid deserts.  And now we have a bee that lives in close proximity to an active volcano!  The work is by one of my former PhD students, Dr Hilary Erenler (who is still a Visiting Researcher at the University of Northampton), and is featured in a big news story in the journal Science.

Here’s a link to the story.

The full reference for the study, with a link to the journal, is:

Hilary E. Erenler, Michael C. Orr, Michael P. Gillman, Bethan R. B. Parkes, Hazel Rymer and Jean-Michel Maes (2016) Persistent nesting by Anthophora Latreille, 1803 (Hymenoptera: Apidae) bees in ash adjacent to an active volcano. Pan-Pacific Entomologist 92:67-78.

Well done Hils, it’s a great study!





Filed under Bees, Biodiversity, Evolution, University of Northampton

Pollinators and pollination – something for the weekend #9

The latest in an (ir)regular series of posts to biodiversity-related* items that have caught my attention during the past few weeks; this one’s focused on pollinators and pollination because there’s been so much emerging on this recently it’s been impossible to decide what to write more fully about!


Feel free to recommend links that have caught your eye.

*Disclaimer: may sometimes contain non-biodiversity-related items.

1 Comment

Filed under Bees, Biodiversity, Birds, Brazil, Ecosystem services, Evolution, Honey bees, Macroecology, Pollination

Virtual Conference on Pollinators, Pollination and Flowers

B pasc on sunflower

Academic conferences are an important part of what makes science function, via the exchange of ideas and information, publicly and in person.  The act of sitting and listening to both established and early career researchers discussing their most recent work, sometimes before it’s in print, is stimulating and exciting, and will never be replaced by digital technology. We’re social animals and conferences, as much as anything else, are social events.

But conferences are becoming more expensive, more frequent, and increasingly out of reach to researchers with limited budgets.  They are also getting larger: how many times have you attended a big conference and been torn between which of two (or three or four) talks to go to in parallel sessions?  Wouldn’t it be nice to be able to see all of them?  Or to go back and hear again the talks that you most enjoyed?  Likewise, wouldn’t it be great if your students or members of the public could also see what such conference presentations are like?

With this in mind, some time ago I dreamed up the idea of “virtual conferences” in as an experiment that aims to bring together into one place the most interesting recorded seminars, webinars, conference talks and public lectures that are freely available, and present them as a series of themed mini-conferences.  All of the videos in these collections are available on sites such as YouTube* and my role is just to curate them and present them in one place for convenience, as a showcase for some of the best research in biodiversity, evolutionary biology, ecology and conservation, very broadly defined, including inter-disciplinary and policy-related presentations.  And just as at a conference, there’s an opportunity to discuss the talks in the comments section on each post and to provide links to other talks on the same topic.

As well as being a service to the research community and the wider public, I hope that these conferences will be a useful teaching resource at advanced undergraduate and postgraduate level.

If anyone is interested in guest-curating a set of presentations in their own subject area on this blog, please do get in touch and I’ll be happy to talk about it.

So here’s the first virtual conference, on (naturally) pollinators, pollination and flowers:


Judith Bronstein (University of Arizona)

The conservation biology of mutualism


Peter Crane (University of Chicago)

The origins of flowers


Jeffery Pettis (USDA Bee Research Laboratory, Maryland)

The role of pesticides in declining pollinator health


Linda Newstrom (Landcare Research, New Zealand)

Pollinator systems in New Zealand and sustainable farming fund


Mace Vaughan and Eric Mader (Xerces Society/USDA/University of Minnesota)

Pollinator habitat assessment and establishment on organic farms


Carlos Vergara, Rémy Vandame, and Peter Kevan (Universidad de las Americas-Puebla/El Colegio de la Frontera Sur/CANPOLIN)

Coffee pollination in the Americas


Claire Kremen (University of California, Berkeley)

Restoring pollinator communities in California’s agricultural landscapes


*I’m assuming that, as all of these videos are in the public domain, none of the presenters or copyright owners objects to them being presented here.  If you do, please get in touch and I’ll remove it.


Filed under Bees, Biodiversity, Ecosystem services, Evolution, Honey bees, Mutualism, Pollination, Royal Society