Category Archives: Bees

Pollinator availability, mating system and variation in flower morphology in a tropical savanna tree – a new, open-access study

Curatella image by Pedro Lorenzo

Widespread plant species can encounter a variety of different pollinators across their distributional range.  This in turn can result in local adaptation of flowers to particular pollinators, or to an absence of pollinators that results in adaptations for more self pollination.   A newly published study by one of my former PhD students, André Rodrigo Rech in Brazil, has looked at this in the widespread South American savanna tree Curatella americana.  André studied 10 populations separated in space by thousands of kilometres, in cerrado vegetation, one of the most threatened habitat types in Brazil.  Here’s the abstract:

Widely distributed organisms face different ecological scenarios throughout their range, which can potentially lead to micro-evolutionary differentiation at specific localities. Mating systems of animal pollinated plants are supposed to evolve in response to the availability of local pollinators, with consequent changes in flower morphology. We tested the relationship among pollination , mating system, and flower morphology over a large spatial scale in Brazilian savannas using the tree Curatella americana (Dilleniaceae). We compared fruit set with and without pollinators in the field, and analyzed pollen tube growth from self- and cross-pollinated flowers in different populations. Populations with higher natural fruit set also had lower fruit set in bagged flowers, suggesting stronger barriers to self-fertilization. Furthermore, higher levels of autogamy in field experiments were associated with more pollen tubes reaching ovules in self-pollinated flowers. Morphometric studies of floral and leaf traits indicate closer-set reproductive organs, larger stigmas and smaller anthers in populations with more autogamy. We show that the spatial variation in mating system, flower morphology and pollination previously described for herbs also applies to long-lived, perennial tropical trees, thus reemphasizing that mating systems are a population-based attribute that vary according to the ecological scenario where the plants occur

Here’s the full citation with a link to the paper which is open access:

Rech, A.R., Ré Jorge, L., Ollerton, J. & Sazima, M. (2018) Pollinator availability, mating system and variation in flower morphology in a tropical savannah tree. Acta Botanica Brasilica (in press)

The illustration of Curatella americana  and its pollinators is by Pedro Lorenzo.

This paper is a contribution to a special issue of Acta Botanica Brasilica dedicated to floral biology and pollination biology in Brazil It’s all open access and if you follow that link you can download the papers.


Leave a comment

Filed under Bees, Biodiversity, Biogeography, Brazil, Evolution, Pollination

Why I’m joining the People’s Walk for Wildlife on Saturday 22nd September

Peoples walk for wildlife

If you live in the UK and have an interest in wildlife you’ve probably heard about the event that takes place in London this coming Saturday:  The People’s Walk for Wildlife.  If you follow that link you’ll find a video of Chris Packham explaining what the walk is all about and why he’s organised it, plus logistical information, timings, etc.

Karin and I are going to join the walk and I thought I’d give a brief summary of why I think it’s important for people to take part.

If you watch the video you’ll see that Chris does a great job of laying out the issue of wildlife loss, a loss not just of species but of abundance.  There are species that still can be found in Britain but which have declined in numbers by 90% or more over my lifetime.  Such species can be found in all of the major groups of biodiversity in this country:  birds, mammals, fish, reptiles and amphibians, insects and other invertebrates, fungi, and plants.  Many, many millions of individuals gone from our countryside.

Why has this happened?  Well, the causes are complex and inter-related.  Agricultural intensification over the last century has been a major issue as I’ve previously discussed on this blog in relation to pollinator extinctions.  But that’s only part of it. Another big problem that we have in the UK is an unwillingness to let nature just get on with itself.  We feel that we have to manage everything: Too many ravens?  Cull them.  Hedgerows or road verges looking a bit untidy?  Cut them.  Old tree infected with a fungus?  Chop it down.

In part this mindset is linked to an idea of what natural heritage should look like, an idea of order within a landscape, of making the countryside look pretty, and of doing things simply because that’s what our predecessors did.  A good example was recently tweeted by Dave Goulson who had found mole traps on a Natural Trust property that he visited; as Dave rightly said:  “When will we stop slaughtering harmless wildlife that causes us the tiniest inconvenience?”  There is no reason in this day and age to kill moles – what conceivable harm do they do?  In fact, as ecosystem engineers, they are an important part of the ecology of the British countryside.

One of the reasons why this is happening largely unnoticed by the government agencies responsible for the environment is that our landscapes change at a very slow rate.  Indeed places like the Lake District or the Scottish Highlands or the Chiltern Hills look much the same as they have done for hundreds of years.  Visually they are still stunning places to visit and that’s why they attract millions of tourists every year, and also why people enjoy living there.  But they have lost much of their wildlife and, with it, some of the ecological function that makes them work as ecosystems.  If this continues then natural processes such as dispersal of seeds by birds and mammals, and the subsequent maintenance of tree populations, will cease.

But that’s okay isn’t it?  Trees and shrubs not establishing themselves: go out and plant them by hand.  Is this really what we want?  If it is then we will end up turning our countryside into a museum.  And not even a very good museum at that: not a museum with dynamic interactive displays, rather a static, dull set of exhibits that you can only peer at through dusty glass.

So that’s why we are joining the People’s Walk for Wildlife next Saturday: this is an important issue and people need to show government that they are concerned.  I hope you agree and I hope you will join us.

Dave G. has promised to come dressed as a bumblebee; I’ve seen his costume and he’s a man of his word, so it’ll be worth looking out for him.  I can’t promise anything so flamboyant but I may well take a placard that says something like:  “Save ALL of our pollinators, not just bees!”  If you spot it, do some over and say hello.


Filed under Bees, Biodiversity, Ecosystem services

There ain’t no b(ee) in Starbucks


I do love a road trip.  Karin and I are just back from a drive too and from her homeland of Denmark, via ferry from Harwich to Hook of Holland, in order to pick up a porcelain dinner service that belonged to her grandparents.  It was a great trip and I hope to put up some photos from that shortly.  But before then I thought I’d write a short post about a key element of any good road trip:  coffee.

If I drive for two hours or so I have to take a break and top up with at least a coffee, possibly also a snack, certainly lunch at the appropriate time.  Last Friday, en route to Harwich, we stopped off at a motorway service station that had a Starbucks.  Whilst waiting for my coffee (Americano, no milk, thank you very much) I noticed that there was quite a lot of text on the walls all about where and how coffee grows, its cultivation and harvesting, and so forth.  Being the sort of ecologist who is interested in how plants flower and set fruit I focused on the relevant text (see the photo above).  It’s a little indistinct but, in essence, this is what it says:

“Coffee plants flower once a year…..the flowers are jasmine scented….and then some magic happens….and nine months later you get coffee fruit”

Okay, I made up the bit about “magic” but, seriously, that’s what is implied by this text: that by some hocus pocus, coffee flowers turn into the coffee fruit that contain the beans.  No mention made of the fact that pollinators (mainly wild and managed bees) are important in this process.  Although coffee can self pollinate (which is fairly magical I suppose) without the pollinators we would have much less coffee of poorer quality.

In my recent review of pollinator diversity and conservation I did some back-of-the-envelope calculations of coffee production to illustrate the dependence of modern human society on animal pollination. Here’s what I wrote:

“Coffee is pollinated by a range of wild insects (mainly bees) and managed honeybees (Ngo et al. 2011), is second only to oil in terms of its value as a commodity [turns out this is not true – see below*], and supports millions of subsistence farmers. Global coffee production in 2016 amounted to 151.624 million bags, each weighing 60kg (International Coffee Organisation 2017). One coffee bean is the product of a single fertilisation event following the deposition of at least one pollen grain on a flower’s stigma. The mean weight of a single coffee bean is about 0.1g which means there are approximately 600,000 beans in a 60kg bag. The total number of coffee beans produced in 2016 is therefore 151.624 million bags multiplied by 600,000 beans per bag, which equals 90,974,400,000,000, or >90 trillion coffee beans. However coffee is on average 50% self pollinating (Klein et al. 2003) and a single bee visit may pollinate both ovules in each coffee flower, so we can divide that figure by four: nonetheless global coffee production requires at least 22 trillion pollinator visits to flowers. Clearly the global coffee market is supported by many billions of bees that require semi-natural habitat as well as coffee plantations in order to survive”.

I don’t want to pick on Starbucks, it just so happens that that’s where we stopped, and I have certainly seen similar displays in Costa, for instance, with again no mention of bees.  Apparently Starbucks et al. don’t want to acknowledge the role of these bees in supporting their (very lucrative) industry, at least not in the cafes themselves.  If you Google “Starbucks pollinators” then you find some information online about how the company values bees, etc. etc.  But come on coffee sellers, you’re better than this, let the public know in the places where the public goes!  If you need advice from an expert, someone to write some text for you, I’m more than happy to act as a consultant.


*Even careful scientists get things wrong sometimes – this is a myth as you can read if you follow this link.



International Coffee Organisation. 2017. Coffee production statistics for 2016. Accessed 20th June 2017

Klein AM, Steffan-Dewenter I, Tscharntke T. 2003. Fruit set of highland coffee increases with the diversity of pollinating bees. Proc. R. Soc. B. 270: 955–961

Ngo HT, Mojica AC, Packer L. 2007. Coffee plant – pollinator interactions: a review. Can. J. Zool. 89:647–660



Filed under Bees, Biodiversity, Ecosystem services, Honey bees, Pollination

British phenological records indicate high diversity and extinction rates among late-summer-flying pollinators – a recently published study

Balfour et al Figure 1

Natural history records of plant flowering and pollinator foraging, much of them collected by well informed amateurs, have huge scientific importance. One of the values of such records to ecology is that it allows us to document where these species occur in space and when they are active in time. This can be done at a range of spatial and temporal scales, but large-scale patterns (for example at a country level) are, I think, especially useful because they provide scientific evidence that can inform national conservation strategies.

During 2017 I collaborated with a young early career researcher at the University of Sussex, Dr Nick Balfour, on an analysis of the phenologies of British pollinators and insect pollinated plants.  That study was recently published (see citation below) and I think that the results are fascinating.

Nick did most of the leg work on this, which involved assessing more than one million records that document the activity times of aculeate wasps, bees, butterflies and hoverflies held in the databases by three of the UK’s main insect recording organisations, the Bees, Wasps and Ants Recording Society (BWARS), the UK Butterfly Monitoring Scheme (UKBMS) and the Hoverfly Recording Scheme (HRS).  Information on flowering times was taken from a standard British flora (Clapham et al. 1990 – Flora of the British Isles. Cambridge University Press).

As well as looking at annual flight periods and flowering trends for these organisms we also focused on pollinator and plant species that were endangered or extinct. Here are some headline results and thoughts on what the work shows:

  • About two-thirds (62%) of pollinator species peak in their flight times in the late summer (July and August), though there was some variation between the different groups – see the figure from the paper above).  Particularly noticeable was the double peak of the bees, with the first peak denoting the activity of many early-emerging solitary bees, such as species of the genus Andrena, whilst the second peak is other solitary bees plus of course the bumblebees which by that time have built up their colonies.
  • A rather fixed phenological pattern with respect to different types of plants was also apparent, which I was not expecting at all: insect pollinated trees tend to flower first, followed by shrubs, then herbaceous species (again, refer to the figure above). This might be because larger plants such as trees and shrubs can store more resources from the previous year that will give them a head start in flowering the following year, but that idea needs testing.
  • Putting those first two points together, what it means is that trees tend to be pollinated by those earlier emerging bees and hoverflies, whereas the herbs are mainly pollinated by species that are active later.
  • When looking at the extinct and endangered pollinators, the large majority of them (83%) were species with a peak flight times in the late summer, a much larger proportion than would be expected given that 62% of all species are active at that time. However this was mainly influenced by extinct bee species and the same pattern was not observed in other groups.
  • The obvious explanation for that last point is that historical changes in land use have led to a dramatic reduction in late summer flowering herbaceous species and the subsequent loss of floral resources has been highly detrimental to those bees. But intriguingly no such pattern was apparent for the endangered pollinators and clearly there are complex reasons why pollinators should become rare or extinct, a point that I have discussed previously on the blog.
  • The lack of late summer flowering resources for pollinators is a contentious issue however as plant conservation groups have in the past recommend that meadows and road verges are cut in late summer to maximise plant species richness.  Mowing road verges once or twice a year certainly benefits plant diversity, as this recent review by Jakobsson et al. (2018) demonstrates.  But there’s very little data available that assesses how timing of cutting can affect pollinators.  The only study that I know of (and if I’ve missed any, please let me know) that has considered this is the PhD work of one of my former students, Dr Sam Tarrant who looked at pollinators and plants on restored landfill sites compared to nearby nature reserves.  In a paper that we published in the journal Restoration Ecology in 2012 we showed that on restored landfill sites the abundance of pollinators in autumn surveys (conducted September-October) was just as high as for summer surveys.  On nature reserves, which are routinely cut from mid-July onward, this was not the case.

Here’s the full citation of Nick’s study with a link to the publisher’s website, and a copy of the abstract is below.  If anyone wants a PDF, drop me a line:

Balfour, N., Ollerton, J., Castellanos, M.C., Ratnieks, F.L.W. (2018) British phenological records indicate high diversity and extinction rates among late-summer-flying pollinators. Biological Conservation 222: 278-283


The long-term decline of wild and managed insect pollinators is a threat to both agricultural output and biodiversity, and has been linked to decreasing floral resources. Further insight into the temporal relationships of pollinators and their flowering partners is required to inform conservation efforts. Here we examined the
phenology of British: (i) pollinator activity; (ii) insect-pollinated plant flowering; and (iii) extinct and endangered pollinator and plant species. Over 1 million records were collated from the historical databases of three British insect monitoring organisations, a global biodiversity database and an authoritative text covering the national flora. Almost two-thirds (62%) of pollinator species have peak flight observations during late-summer
(July and August). This was the case across three of the groups studied: aculeate wasps (71% of species), bees (60%), and butterflies (72%), the exception being hoverflies (49%). When species geographical range (a proxy for abundance) was accounted for, a clear late-summer peak was clear across all groups. By contrast, there is marked temporal partitioning in the flowering of the major plant groups: insect-pollinated tree species blossoming predominantly during May (74%), shrubs in June (69%), and herbs in July (83%). There was a positive correlation between the number of pollinator species on the wing and the richness of both flowering insect pollinated herbs and trees/shrubs species, per calendar month. In addition, significantly greater extinctions occurred in late-summer-flying pollinator species than expected (83% of extinct species vs. 62% of all species). This trend was driven primarily by bee extinctions (80% vs. 60%) and was not apparent in other groups. We contend that this is principally due to declines in late-summer resource supplies, which are almost entirely provisioned by herbs, a consequence of historical land-use change. We hypothesize that the seasonality of interspecific competition and the blooming of trees and mass-flowering crops may have partially buffered spring flying pollinators from the impacts of historical change.


Filed under Bees, Biodiversity, Butterflies, Hoverflies, Macroecology, Pollination, Wasps

Pollinators, landscape and friends: our recent trip to the Danish island of Sejerø

2018-07-15 11.16.02

This is not the first time I’ve written about the beautiful Danish island of Sejerø – see my post “Why do bumblebees follow ferries?“.  It’s home to our friends Pia and Stephen Valentine (Stephen is the very talented artist who produced the fabulous study of waxwings that Karin commissioned for my birthday last year).  Earlier this month we traveled over to stay with them and to explore some more of the island.  Here are some photos and thoughts from that trip.

Despite the hot, dry weather that northern Europe has been experiencing recently there were pollinators aplenty.  Thistles and knapweeds (both groups from the daisy family Asteraceae) are well known to be drought tolerant and attract a lot of insect interest.  This is a Pantaloon Bee (Dasypoda sp.)  If it was Britain I’d say that it was D. hirtipes, but there are other species on the continent so I can’t be sure.  These bees are well named: the “pantaloons” are found only on the females and are used to collect pollen, especially from Asteraceae.

2018-07-14 14.44.18

I believe that this is the male of this species; note the absence of the pollen-collecting hairs on the rear legs and the yellow face, typical of many male bees:

The flower heads of the knapweeds were highly sought after; on this one, two different bumblebees (Bombus spp.) were competing with two Silver Y moths (Autographa gamma):

2018-07-14 14.59.22

Sometimes the bumblebees got an inflorescence to themselves, though the photobombing Silver Ys were never far away:

2018-07-13 13.41.07

It’s been a good year for the Silver Y, large numbers have migrated northwards from southern Europe and we’ve had lots in our garden too.  On Sejerø they were everywhere, on all kinds of plants: 

2018-07-14 14.53.52

The butterfly is one of the Blues (Lycaenidae), possibly Common Blue (Polyommatus icarus), but again this being Denmark they may have other species that I’m not familiar with.  Note the Silver Y photobombing once more…:


Wild carrot (Daucus carota) was common on the island and always attracts a wide range of flies, wasps and beetles:


2018-07-13 11.53.40

Close to home we found a huge cherry tree laden with the fruits of pollination and collected a couple of kilos for Stephen to make into jam.  Stoning them was messy but fun and a nice opportunity to sit and chat about nature and people:

2018-07-14 11.05.32

I was very impressed with Stephen’s up-cycled general purpose baskets, made from plastic containers he finds on the beach, wire, and lengths of old hosepipe:

2018-07-14 11.06.17

Along the shore another edible plant, Sea Kale (Crambe maritima) was attracting a lot of attention from white butterflies (Pieridae) whose caterpillars feed on this and other members of the cabbage family (Brassicaceae):

2018-07-13 11.20.10

I tried a piece of raw leaf; it tasted ok, salty and a little bitter.  Apparently it’s very nice if you blanch the young leaves.  It’s a distinctive and impressive component of the beach flora:

2018-07-14 14.41.16

Amidst the greens, buffs and browns of the beach landscape we encountered the occasional scarlet of a patch of poppies (Papaver sp.):

2018-07-13 13.29.52

Everywhere on the island we saw evidence of the link between life on land and in the sea, and the cycles and processes upon which that life depends.  Sand martins (Riparia riparia – an apt name – “riparian” refers to the interface between land and water) are common and their nest excavations speed up the return of sediments back to the sea:

2018-07-13 12.02.21.jpg

Favoured rocks have been used by gulls and other sea birds for generations, their guano helping to enrich these coastal waters and fueling the primary production of seaweeds and diatoms, which in turn feed other shore life:

2018-07-13 13.39.11

2018-07-13 12.26.00

2018-07-13 12.25.32

2018-07-14 15.55.25.jpg

Evidence of human activities was never far away, though, concrete and steel blending with nature:

2018-07-13 11.55.46

Wheat fields merging with the sky:

2018-07-14 15.13.26

Thanks to Pia and Stephen, and of course Zenja, for making this such a wonderful trip and allowing us to join them in exploring their home island:

2018-07-14 15.19.05

2018-07-13 11.09.36

2018-07-14 15.07.14







Filed under Bees, Biodiversity, Birds, Butterflies, Moths, Pollination

Hunting the Chequered Skipper: an encounter with England’s latest species reintroduction project


If you have been following recent conservation news on social media you’ll know that this week was an important one for invertebrates.  The Chequered Skipper, a butterfly last seen in England in 1976, has been reintroduced to the country as part of the Back From the Brink initiative.  The Chequered Skipper project is led by Butterfly Conservation and a team travelled to a site in Belgium earlier in the week where about 40 skippers were captured.  These insects were transported back to the UK where they were held overnight in mesh cages at a secret location in order to acclimatise them, then released into the wild.  The release was filmed as part of next week’s BBC Springwatch series – look out for it.

The exact location of the reintroduction is secret.  However I can tell you that it’s occurred in the Rockingham Forest area of north Northamptonshire, in habitat that (over the past couple of years) has been managed specifically for this reintroduction, in order to create a network of sites across which the species could disperse in the future.  This area was the last stronghold of the species in England prior to its extirpation.  No one knows why it went extinct here, but hung on and did well in Scotland, but it may relate to climate: 1976, as many of the middle-aged will remember, was a very hot, dry summer, and this butterfly likes it warm and humid.

Yesterday I had the privilege of seeing this reintroduction first hand when I visited the site with my colleague Dr Duncan McCollin.  Duncan and I are supervising a PhD student, Jamie Wildman, along with Prof. Tom Brereton, Head of Monitoring at Butterfly Conservation (BC), and the University of Northampton’s Visiting Professor in Conservation Science.  Jamie’s project will focus on understanding the habitat requirements for Chequered Skipper, and monitoring the success of the reintroduction.  I’m also hoping that it might be possible for Jamie to assess the role of this species as a pollinator of the plants it visits.  Butterflies as pollinators is a very under-researched area.

Here’s a shot of the Four Mus-skipper-teers* just before we set off to help BC volunteers to locate the skippers and record their behaviour:

Four Mouse-skipper-teers 2018-05-26 11.10.19.jpg


The day started unpromisingly.  It was cool and overcast, and little was flying except some hardy Common Carder Bees.  But around lunchtime things began to warm up and gradually the sun broke through and we started to see flying Lepidoptera that we excitedly chased, only to be disappointed by yet another Mother Shipton or Silver Y.  But no skippers.

As we encountered some of the BC volunteers who were also tracking the insects we were told that we had “just missed one” or that they “saw one down that ride, we marked the spot”.  One volunteer wanted to show me a photo of a Chequered Skipper that he’d just taken “so I could get my eye in”.  I politely refused; I wanted to see the real thing and didn’t want to jinx it with a digital preview.

Finally, our efforts were rewarded and we found the first skipper of several we later encountered.  The image at the head of this post is that butterfly, a sight that has not been seen in England in more than 40 years.  An exciting and privileged encounter.  The county Butterfly Recorder, David James (on the right in this next shot), is ecstatic that the reintroduction has occurred “on his patch” but also nervous at the responsibility it represents:

Skipper crew 2018-05-26 13.15.06

Later we spent time helping Jamie follow a female skipper who was showing egg-laying behaviour, moving slowly for short distances along a shrubby edge, occasionally nectaring on Bugle, and diving deep into the vegetation to (we hope) oviposit on grass leaves:


Skipper watching 2018-05-26 15.10.18

Although I’ve over-cropped this next image of the skipper on Bugle, I thought I’d leave it as I like the different textures and patterns, and the slightly blurry ambience:

Skipper nectaring 2018-05-26 13.06.08

The primary aim of Butterfly Conservation’s project is to return a small part of England’s lost biological heritage.  But it’s about more than just the Chequered Skipper.  It’s also about understanding how managing a network of sites for this flagship species can benefit other organisms.  The wide woodland rides that have been created are packed with plant species, amongst them at least five grasses that could be used as caterpillar food sources for the skippers, plus more than 20 nectar sources were flowering that they (and other flower visiting insects) could use.  Those other insects were plentiful too: over the day I spotted five species of bumblebees, several different day flying moths, lots of Dark-edged Bee Flies, and a few different solitary bees and syrphids flies.  We heard calling cuckoos, and four different warblers: chiffchaffs, garden warbler, whitethroats, and blackcaps.  Red kites (another incredibly successful species reintroduction) floated overhead skimming the treetops as they their cried to one another.

Rockingham Forest is a lovely part of Northamptonshire, well worth a visit.  The Chequered Skipper will be a wonderful addition to its biodiversity.  Of course there are no guarantees that the reintroduction part of the project will be a success, but if it isn’t it won’t be because of a lack of commitment from the people involved.  If the population does become established then in the future the location will be made public and butterfly enthusiasts will be able to come and pay homage to one of the few butterflies with a pub named after it.


*You get the puns you deserve on this blog…..



Filed under Bees, Biodiversity, Birds, Butterflies, Pollination, University of Northampton

The flowers, the bees, and the tractor: a true story

Yesterday I was up and out early with colleagues and students to carry out the first of this season’s spring bird surveys of the University of Northampton’s new Waterside Campus – see my previous post on this topic.   We had finished one stretch of the survey and were walking back along the path next to Midsummer Meadow when I spotted a huge expanse of Red Dead-Nettle (Lamium purpureum), mixed in with some While Dead-Nettle (Lamium album):

Tractor 1 2018-04-18 08.21.14

Both species produce a lot of nectar; as kids we would often suck it from the flowers of White Dead-Nettle, and they are just as attractive to bees and other pollinators:

Tractor 2 2018-04-18 08.24.16

Sure enough, a quick survey showed that there were at least two species of bee working the flowers, Common Carder Bees (Bombus pascuorum), and male and female Hairy-footed Flower Bees (Anthophora plumipes) – here’s a shot of the female:

Tractor 3 - 2018-04-18 08.23.53

Suddenly there was an exclamation from one of my colleagues: whilst I was focused on the bees he’d seen a tractor pulling a grass cutter coming towards us:

Tractor 4 2018-04-18 08.25.06

It got closer…:

Tractor 5 - 2018-04-18 08.25.12

…and closer…:

Tractor 6 - 2018-04-18 08.25.25

…and we were sure it was going to mow this beautiful patch of wild flowers, and the bees, into oblivion:

Tractor 8 - 2018-04-18 08.25.46

But it didn’t!  The driver carefully mowed round the patch and headed back the way he’d come:

Tractor 9 - 2018-04-18 08.26.33

A big relief!

Urban recreational grasslands like this clearly need to be managed by regular cutting, but this should be done strategically as these sorts of wild flower patches are important nectar and pollen sources for urban pollinators.  They are especially critical at this time of year when resources are needed to build up colony numbers in the social species like Common Carder Bee.  I don’t know who manages Midsummer Meadow – presumably contractors working on behalf of Northampton Borough Council?  But I hope that this is a conscious strategy by them to conduct “smart mowing” whereby they cut around flower patches like this even when they are not planted.  The bees (and I) thank you for it.


Filed under Bees, Biodiversity, Birds, University of Northampton, Urban biodiversity

Can pollinators survive sudden changes in the weather?

Snow-Warm garden comparison

Just how pollinators cope with sudden changes in the weather early in the season is a bit of a mystery.  Take 2018 as an example; my wife Karin spotted the first queen bumblebee in the garden on 6th January, investigating a camellia flower just outside the kitchen.  Over the course of the next few weeks I saw a few more at various sites, plus occasional hibernating butterflies such as the red admiral. The various social media outlets were reporting similar things, it looked as though we were going to have an early spring.

Then at the end of February “The Beast from the East” hit the UK, a weather system from Siberia that brought some of the coldest weather and heaviest snow the country had experienced for several years.  That persisted for over a week then things got much milder.  On 16th March I was in the garden and spotted the first male hairy-footed flower bee of the year, plus a mining bee (Andrena sp.), and a brimstone butterfly, and a queen bumblebee, and a red admiral.  Great I thought, spring really is here!  The next day it snowed.  A “Mini Beast From the East” had arrived, rapidly: the two pictures above making up the composite view of our garden were taken two days apart.

What happened to all of those insects I saw? Were they killed by the cold weather?  Or did they survive?  We have no firm data to answer that question – as far as I’m aware no one has ever tagged early emerging pollinators and followed their progress (I could be wrong – please let me know if I am).  It would make an interesting, though labour intensive, project but could be done using non-toxic paint of various colours to mark the insects.

I suspect that some of the pollinators I saw were killed, but most were not and simply went back into hibernation for a short period, hunkering down in safe, sheltered spots.  That makes much more evolutionary sense: any insects in the UK that cannot survive sudden changes in the weather would have gone extinct long ago.  Another clue to support this idea is the fact that plants in flower early in the season, and in some cases the flowers themselves, usually survive the cold weather and come back as if nothing had happened.  If the flowers can do it, and they have to stay where they are, surely the mobile pollinators can also do it?

As always I’d be interested in your thoughts on this topic, feel free to comment.  And while we wait for the UK to thaw, here’s some topical and rather catchy music to listen to – The Beelievers singing “Mr Gove”.


Filed under Bees, Biodiversity, Butterflies, Gardens, Pollination, Urban biodiversity

Mini Bee Symposium – University of Northampton – 13th March 2018

All speakers 20180313_172553_preview

No, not a symposium about tiny Anthophila, but a small get together to discuss bee-related research.  One of the pleasures of my job is hosting visiting scientists from around the world and at the moment I am playing host to three colleagues here in Northampton.   Dr Pablo Gorostiague from the National University of Salta in Argentina is working with me as a visiting postdoc for six months, whilst from the Institute of Zoology at the Chinese Academy of Sciences we have Prof. Chao-Dong “CD” Zhu and Dr Michael Orr here for three days.

So in honour of these visitors, and to introduce them to a wider range of UK bee researchers (some of whom they had corresponded with but never met) I thought it would be fun to organise an informal symposium where people who are (reasonably) nearby could come and present recent bee -related research.

So it was that yesterday a group of about 20 of us spent a great afternoon together listening to 10 short talks.  Here are the presenters and a short description of their presentations:

Steven Falk (independent consultant) discussed “Breaking down barriers to bee identification in Britain” and explained the philosophy behind the structure of his recent Field Guide to the Bees of Great Britain and Ireland.

Stella Watts (Universities of Northampton and Haifa) described her work as a postdoc in Israel examining the structure of plant-pollinator networks centred around some endemic irises.

Chris O’Toole (University of Oxford) dealt with an intriguing phenomenon of what appears to be age-related senility in some Osmia spp.

Pablo Gorostiague told us about his work on bee (and other) pollinators of cacti in his native Argentina.

Ratheesh Kallivalappil (University of Lincoln) discussed his PhD work looking at the decline of global pollinator biodiversity in the Anthropocene.

After a tea break, Stephanie Maher (Anglia Ruskin University) described her PhD work on the nesting ecology of solitary bees in the UK, including a very successful citizen science project.  She argued persuasively for a national database of bee nesting sites.

CD Zhu discussed how modern omics approaches could be integrated into research programmes for understanding the phylogenies and interactions of large clades of species.

Michael Orr talked about the nesting behaviour of some solitary bees of SW North America, and I was surprised to learn that some species can remain in their nests for up to four years before emerging.

In a spontaneous, unscheduled talk Sam Gandy (Universities of Aberdeen and Sussex) told us about research he was involved with that aimed to assess competition between honey bees and bumblebees foraging on lavender.  He did a great job considering he’d not seen the presentation previously, it was emailed to him during the tea break!

Finally I talked about some of our ongoing work assessing the spatio-temporal stability of pollination of an endemic plant by endemic bees in Tenerife.

Following a photo call for all the speakers (see above) we decamped to a local hostelry for beer and food.  Al-in-all a great day of science and networking.  Thanks to all of the speakers and the audience for taking part!

Here are a few more images from the day:

Michael Orr 2018-03-13 16.08.15_preview

Michael Orr in action (I helped to cut that hair!)

Chris OToole 2018-03-13 13.44.37_preview

Chris O’Toole and some of his senile bees

Stella 2018-03-13 13.24.34_previewStella Watts is a blur when presenting her work!

There’s a lot more images on Twitter if you search for #MiniBeeSymposium




Filed under Bees, Biodiversity, University of Northampton

Plant-pollinator networks in the tropics: a new review just published.


As an ecologist who has carried out field work in the temperate zone (UK), the subtropics (Tenerife and South Africa) and the tropics (parts of South America, Africa and Australia)  I’ve always found the idea that the study of ecology can be divided into “tropical” and “non-tropical” a bit odd.  It’s as if the way that the natural world works somehow changes at about 23 degrees north or south of the equator, making things “different” around the equator.  The tropics are a very special, diverse place, it’s true, but so are many places outside the tropics.

With this in mind I was pleased when I was asked by some of my Brazilian colleagues to contribute to a chapter in a new book entitled Ecological Networks in the Tropics. It was an opportunity to review what is known about plant-pollinator networks in the tropics and the ways in which they are very similar to such networks at lower latitudes. Here’s the details of the chapter, followed by the abstract.  If anyone wants a copy please drop me an email:

Vizentin-Bugoni J, PKM Maruyama, CS Souza, J Ollerton, AR Rech, M Sazima. (2018) Plant-pollinator networks in the tropics: a review. pp 73-91 In Dáttilo W & V. Rico-Gray. Ecological networks in the Tropics. Springer.


Most tropical plants rely on animals for pollination, thus engaging in complex interaction networks. Here, we present a global overview of pollination networks and point out research gaps and emerging differences between tropical and non-tropical areas. Our review highlights an uneven global distribution of studies biased towards non-tropical areas. Moreover, within the tropics, there is a bias towards the Neotropical region where partial networks represent 70.1% of the published studies. Additionally, most networks sampled so far (95.6%) were assembled by inferring interactions by surveying plants (a phytocentric approach). These biases may limit accurate global comparisons of the structure and dynamics of tropical and non-tropical pollination networks. Noteworthy differences of tropical networks (in comparison to the non-tropical ones) include higher species richness which, in turn, promotes lower connectance but higher modularity due to both the higher diversity as well as the integration of more vertebrate pollinators. These interaction patterns are influenced by several ecological, evolutionary, and historical processes, and also sampling artifacts. We propose a neutral–niche continuum model for interactions in pollination systems. This is, arguably, supported by evidence that a high diversity of functional traits promotes greater importance of niche-based processes (i.e., forbidden links caused by morphological mismatching and phenological non-overlap) in determining which interactions occur, rather than random chance of encounter based on abundances (neutrality). We conclude by discussing the possible existence and direction of a latitudinal gradient of specialization in pollination networks.


Filed under Bees, Biodiversity, Biogeography, Macroecology, Mutualism, Pollination